Spaces:
Runtime error
Runtime error
import re | |
import streamlit as st | |
import requests | |
import pandas as pd | |
from io import StringIO | |
import plotly.graph_objs as go | |
from huggingface_hub import HfApi | |
from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError | |
#from yall import create_yall | |
def place_holder_dataframe(): | |
list_dict = [ | |
{"gist_id":"mistralai/Mistral-7B-Instruct-v0.3", | |
"filename":"https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3/blob/main/README.md", | |
"url":"https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3", | |
"model_name":"Mistral-7B-Instruct-v0.3", | |
"model_id":"mistralai/Mistral-7B-Instruct-v0.3", | |
"Model":"Mistral-7B-Instruct-v0.3", | |
"Elo":1200, | |
"Undetected rate":0.27 | |
}, | |
{ | |
"gist_id":"mistralai/Mixtral-8x22B-Instruct-v0.1", | |
"filename":"https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1/blob/main/README.md", | |
"url":"https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1", | |
"model_name":"Mixtral-8x22B-Instruct-v0.1", | |
"model_id":"mistralai/Mixtral-8x22B-Instruct-v0.1", | |
"Model":"Mixtral-8x22B-Instruct-v0.1", | |
"Elo":1950, | |
"Undetected rate":0.63 | |
}, | |
{ | |
"gist_id":"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"filename":"https://huggingface.co/mistralai/Mixtral-8x7B-v0.1/blob/main/README.md", | |
"url":"https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"model_name":"Mixtral-8x7B-Instruct-v0.1", | |
"model_id":"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"Model":"Mixtral-8x7B-Instruct-v0.1", | |
"Elo":1467, | |
"Undetected rate":0.41 | |
} | |
] | |
df = pd.DataFrame(list_dict) | |
return df | |
def convert_markdown_table_to_dataframe(md_content): | |
""" | |
Converts markdown table to Pandas DataFrame, handling special characters and links, | |
extracts Hugging Face URLs, and adds them to a new column. | |
""" | |
# Remove leading and trailing | characters | |
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE) | |
# Create DataFrame from cleaned content | |
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python') | |
# Remove the first row after the header | |
df = df.drop(0, axis=0) | |
# Strip whitespace from column names | |
df.columns = df.columns.str.strip() | |
# Extract Hugging Face URLs and add them to a new column | |
model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)' | |
df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None) | |
# Clean Model column to have only the model link text | |
df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x)) | |
return df | |
def get_model_info(df): | |
api = HfApi() | |
# Initialize new columns for likes and tags | |
df['Likes'] = None | |
df['Tags'] = None | |
# Iterate through DataFrame rows | |
for index, row in df.iterrows(): | |
model = row['Model'].strip() | |
try: | |
model_info = api.model_info(repo_id=str(model)) | |
df.loc[index, 'Likes'] = model_info.likes | |
df.loc[index, 'Tags'] = ', '.join(model_info.tags) | |
except (RepositoryNotFoundError, RevisionNotFoundError): | |
df.loc[index, 'Likes'] = -1 | |
df.loc[index, 'Tags'] = '' | |
return df | |
def create_bar_chart(df, category): | |
"""Create and display a bar chart for a given category.""" | |
st.write(f"### {category} Scores") | |
# Sort the DataFrame based on the category score | |
sorted_df = df[['Model', category]].sort_values(by=category, ascending=True) | |
# Create the bar chart with a color gradient (using 'Viridis' color scale as an example) | |
fig = go.Figure(go.Bar( | |
x=sorted_df[category], | |
y=sorted_df['Model'], | |
orientation='h', | |
marker=dict(color=sorted_df[category], colorscale='Inferno') | |
)) | |
# Update layout for better readability | |
fig.update_layout( | |
margin=dict(l=20, r=20, t=20, b=20) | |
) | |
# Adjust the height of the chart based on the number of rows in the DataFrame | |
st.plotly_chart(fig, use_container_width=True, height=35) | |
# Example usage: | |
# create_bar_chart(your_dataframe, 'Your_Category') | |
def main(): | |
st.set_page_config(page_title="LLM Roleplay Leaderboard", layout="wide") | |
st.title("ππ LLM Roleplay Leaderboard") | |
st.markdown("LLM Roleplay Leaderboard that uses scores from the matou garou roleplay game π πβ.") | |
#content = create_yall() | |
tab1, tab2 = st.tabs(["ππ Leaderboard", "π About"]) | |
df = place_holder_dataframe() | |
with tab1: | |
if len(df)>0: | |
try: | |
df = df.sort_values(by='Elo', ascending=False) | |
# Add a search bar | |
search_query = st.text_input("Search models", "") | |
# Display the filtered DataFrame or the entire leaderboard | |
st.dataframe( | |
df[['Model', 'Elo', 'url', 'Undetected rate']], | |
use_container_width=True, | |
column_config={ | |
"url": st.column_config.LinkColumn("url"), | |
}, | |
hide_index=True, | |
) | |
# Filter the DataFrame based on the search query | |
if search_query: | |
df = df[df['Model'].str.contains(search_query, case=False)] | |
# Comparison between models | |
selected_models = st.multiselect('Select models to compare', df['Model'].unique()) | |
comparison_df = df[df['Model'].isin(selected_models)] | |
st.dataframe( | |
comparison_df, | |
use_container_width=True, | |
column_config={ | |
"url": st.column_config.LinkColumn("url"), | |
}, | |
hide_index=True, | |
) | |
# Add a button to export data to CSV | |
if st.button("Export to CSV"): | |
# Export the DataFrame to CSV | |
csv_data = df.to_csv(index=False) | |
# Create a link to download the CSV file | |
st.download_button( | |
label="Download CSV", | |
data=csv_data, | |
file_name="leaderboard.csv", | |
key="download-csv", | |
help="Click to download the CSV file", | |
) | |
# Full-width plot for the first category | |
create_bar_chart(df, "Elo") | |
# Next two plots in two columns | |
col1, col2 = st.columns(2) | |
with col1: | |
create_bar_chart(df, "Undetected rate") | |
except Exception as e: | |
st.error("An error occurred while processing the markdown table.") | |
st.error(str(e)) | |
else: | |
st.error("Failed to download the content from the URL provided.") | |
# About tab | |
with tab2: | |
st.markdown(''' | |
### Roleplay Leaderboard | |
This space is here to present the results from the Matou-Garou space, where human and AI play a game of werewolf. | |
It is meant as a social experience to see if you would be able to detect if talking to an AI. | |
We also hope that this leaderboard can be used by video game creator in the future to select what model to select for LLM based NPCs | |
Popularized by [Teknium](https://huggingface.co/teknium) and [NousResearch](https://huggingface.co/NousResearch), this benchmark suite aggregates four benchmarks | |
Leaderboard copied from [Maxime Labonne](https://huggingface.co/mlabonne) | |
''') | |
if __name__ == "__main__": | |
main() | |