hadxu commited on
Commit
76532d7
1 Parent(s): a52141d
Files changed (1) hide show
  1. app.py +9 -13
app.py CHANGED
@@ -3,7 +3,7 @@ import fitz
3
  import re
4
  import numpy as np
5
  import tensorflow_hub as hub
6
- import openai
7
  import gradio as gr
8
  import os
9
  import shutil
@@ -12,8 +12,13 @@ from tempfile import NamedTemporaryFile
12
  from sklearn.neighbors import NearestNeighbors
13
  import huggingface_hub
14
 
15
- openai.base_url = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1/v1/"
16
- openai.api_key = huggingface_hub.get_token()
 
 
 
 
 
17
 
18
  from util import pdf_to_text, text_to_chunks, SemanticSearch
19
 
@@ -29,24 +34,15 @@ def load_recommender(path, start_page=1):
29
  def generate_text(prompt, model = "gpt-3.5-turbo-16k-0613"):
30
 
31
  model="mistralai/Mixtral-8x7B-Instruct-v0.1"
32
-
33
- temperature=0.7
34
  max_tokens=256
35
- top_p=1
36
- frequency_penalty=0
37
- presence_penalty=0
38
- message = openai.ChatCompletion.create(
39
  model=model,
40
  messages=[
41
  {"role": "system", "content": "You are a helpful assistant."},
42
  {"role": "assistant", "content": "Here is some initial assistant message."},
43
  {"role": "user", "content": prompt}
44
  ],
45
- temperature=.3,
46
  max_tokens=max_tokens,
47
- top_p=top_p,
48
- frequency_penalty=frequency_penalty,
49
- presence_penalty=presence_penalty,
50
  ).choices[0].message['content']
51
  return message
52
 
 
3
  import re
4
  import numpy as np
5
  import tensorflow_hub as hub
6
+ from openai import OpenAI
7
  import gradio as gr
8
  import os
9
  import shutil
 
12
  from sklearn.neighbors import NearestNeighbors
13
  import huggingface_hub
14
 
15
+ # openai.base_url = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1/v1/"
16
+ # openai.api_key = huggingface_hub.get_token()
17
+
18
+ clinet = OpenAI(
19
+ base_url='https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1/v1/',
20
+ api_key=huggingface_hub.get_token(),
21
+ )
22
 
23
  from util import pdf_to_text, text_to_chunks, SemanticSearch
24
 
 
34
  def generate_text(prompt, model = "gpt-3.5-turbo-16k-0613"):
35
 
36
  model="mistralai/Mixtral-8x7B-Instruct-v0.1"
 
 
37
  max_tokens=256
38
+ message = clinet.chat.completions.create(
 
 
 
39
  model=model,
40
  messages=[
41
  {"role": "system", "content": "You are a helpful assistant."},
42
  {"role": "assistant", "content": "Here is some initial assistant message."},
43
  {"role": "user", "content": prompt}
44
  ],
 
45
  max_tokens=max_tokens,
 
 
 
46
  ).choices[0].message['content']
47
  return message
48