import gradio as gr from openai import OpenAI from qdrant_client import QdrantClient import os qclient = QdrantClient( url="https://68106439-3d00-42df-880f-a5519695f677.us-east4-0.gcp.cloud.qdrant.io:6333", api_key=os.getenv("QDRANT_API_KEY"), ) client = OpenAI( base_url="https://openrouter.ai/api/v1", api_key=os.getenv("OPENROUTER_API_KEY"), ) def chat(prompt: str) -> str: message = client.chat.completions.create( model="anthropic/claude-3-haiku", messages=[ {"role": "user", "content": prompt} ], ).choices[0].message.content return message def question_answer(chat_history, question): import requests API_URL = "https://api-inference.huggingface.co/models/BAAI/bge-large-zh-v1.5" headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"} payload = { "inputs": question, } response = requests.post(API_URL, headers=headers, json=payload) e = response.json() search_result = qclient.search( collection_name="test_collection", query_vector=e, limit=20 ) txt = '\n'.join([r.payload['text'] for r in search_result]) print(txt) prompt = f"现在你是一个资深的工程师管家,我将相关的信息已经从数据库中通过向量搜索给你了,如下\n{txt}\n, 根据这些信息回答我的这个问题\n{question}\n,"\ "尽量简短以及用数值去说明,如果并没有答案,请回答我不知道。" answer = chat(prompt) chat_history.append([question, answer]) return chat_history with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo: gr.Markdown(f'

Demo

') with gr.Row(): with gr.Group(): # with gr.Accordion("pdf file"): # file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf']) question = gr.Textbox(label='Enter your question here') btn = gr.Button(value='Submit') with gr.Group(): chatbot = gr.Chatbot(label="Chat History", elem_id="chatbot") btn.click( question_answer, inputs=[chatbot, question], outputs=[chatbot], api_name="predict", ) demo.launch(share=True)