hahafofo's picture
init
0db3431
raw
history blame
5.83 kB
import random
import re
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoProcessor
from transformers import pipeline, set_seed
device = "cuda" if torch.cuda.is_available() else "cpu"
big_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco")
big_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco")
text_pipe = pipeline('text-generation', model='succinctly/text2image-prompt-generator')
zh2en_model = AutoModelForSeq2SeqLM.from_pretrained('Helsinki-NLP/opus-mt-zh-en').eval()
zh2en_tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-zh-en')
en2zh_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh").eval()
en2zh_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh")
def load_prompter():
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
return prompter_model, tokenizer
prompter_model, prompter_tokenizer = load_prompter()
def generate_prompter(plain_text, max_new_tokens=75, num_beams=8, num_return_sequences=8, length_penalty=-1.0):
input_ids = prompter_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids
eos_id = prompter_tokenizer.eos_token_id
outputs = prompter_model.generate(
input_ids,
do_sample=False,
max_new_tokens=max_new_tokens,
num_beams=num_beams,
num_return_sequences=num_return_sequences,
eos_token_id=eos_id,
pad_token_id=eos_id,
length_penalty=length_penalty
)
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
result = []
for output_text in output_texts:
result.append(output_text.replace(plain_text + " Rephrase:", "").strip())
return "\n".join(result)
def translate_zh2en(text):
with torch.no_grad():
encoded = zh2en_tokenizer([text], return_tensors='pt')
sequences = zh2en_model.generate(**encoded)
return zh2en_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
def translate_en2zh(text):
with torch.no_grad():
encoded = en2zh_tokenizer([text], return_tensors="pt")
sequences = en2zh_model.generate(**encoded)
return en2zh_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0]
def text_generate(text_in_english):
seed = random.randint(100, 1000000)
set_seed(seed)
result = ""
for _ in range(6):
sequences = text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8)
list = []
for sequence in sequences:
line = sequence['generated_text'].strip()
if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith(
(':', '-', '—')) is False:
list.append(line)
result = "\n".join(list)
result = re.sub('[^ ]+\.[^ ]+', '', result)
result = result.replace('<', '').replace('>', '')
if result != '':
break
return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0)
def get_prompt_from_image(input_image):
image = input_image.convert('RGB')
pixel_values = big_processor(images=image, return_tensors="pt").to(device).pixel_values
generated_ids = big_model.to(device).generate(pixel_values=pixel_values, max_length=50)
generated_caption = big_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_caption)
return generated_caption
with gr.Blocks() as block:
with gr.Column():
with gr.Tab('文本生成'):
with gr.Row():
input_text = gr.Textbox(lines=6, label='你的想法', placeholder='在此输入内容...')
translate_output = gr.Textbox(lines=6, label='翻译结果(Prompt输入)')
with gr.Accordion('SD优化参数设置', open=False):
max_new_tokens = gr.Slider(1, 255, 75, label='max_new_tokens', step=1)
nub_beams = gr.Slider(1, 30, 8, label='num_beams', step=1)
num_return_sequences = gr.Slider(1, 30, 8, label='num_return_sequences', step=1)
length_penalty = gr.Slider(-1.0, 1.0, -1.0, label='length_penalty')
generate_prompter_output = gr.Textbox(lines=6, label='SD优化的 Prompt')
output = gr.Textbox(lines=6, label='瞎编的 Prompt')
output_zh = gr.Textbox(lines=6, label='瞎编的 Prompt(zh)')
with gr.Row():
translate_btn = gr.Button('翻译')
generate_prompter_btn = gr.Button('SD优化')
gpt_btn = gr.Button('瞎编')
with gr.Tab('从图片中生成'):
with gr.Row():
input_image = gr.Image(type='pil')
img_btn = gr.Button('提交')
output_image = gr.Textbox(lines=6, label='生成的 Prompt')
translate_btn.click(
fn=translate_zh2en,
inputs=input_text,
outputs=translate_output
)
generate_prompter_btn.click(
fn=generate_prompter,
inputs=[translate_output, max_new_tokens, nub_beams, num_return_sequences, length_penalty],
outputs=generate_prompter_output
)
gpt_btn.click(
fn=text_generate,
inputs=translate_output,
outputs=[output, output_zh]
)
img_btn.click(
fn=get_prompt_from_image,
inputs=input_image,
outputs=output_image
)
block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')