File size: 5,125 Bytes
a8ede2f
 
 
 
 
 
dc1ba50
a8ede2f
 
 
dc1ba50
a8ede2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1ba50
a8ede2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc1ba50
a8ede2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import pandas as pd
import numpy as np
import plotly.express as px
from plotly.graph_objs import Figure

from src.leaderboard.filter_models import FLAGGED_MODELS
from src.display.utils import AutoEvalColumn, Tasks, Task, BENCHMARK_COLS
from src.leaderboard.read_evals import EvalResult


def create_scores_df(raw_data: list[EvalResult]) -> dict[str, pd.DataFrame]:
    """
    Generates a DataFrame containing the maximum scores until each date.

    :param results_df: A DataFrame containing result information including metric scores and dates.
    :return: A new DataFrame containing the maximum scores until each date for every metric.
    """
    # Step 1: Ensure 'date' is in datetime format and sort the DataFrame by it
    results_df = pd.DataFrame(raw_data)
    #results_df["date"] = pd.to_datetime(results_df["date"], format="mixed", utc=True)
    results_df.sort_values(by="date", inplace=True)

    # Step 2: Initialize the scores dictionary
    scores = {k: [] for k in BENCHMARK_COLS + [AutoEvalColumn.average.name]}

    # Step 3: Iterate over the rows of the DataFrame and update the scores dictionary
    for task in [t.value for t in Tasks] + [Task("Average", "avg", AutoEvalColumn.average.name)]:
        current_max = 0
        last_date = ""
        column = task.col_name
        for _, row in results_df.iterrows():
            current_model = row["full_model"]
            if current_model in FLAGGED_MODELS:
                continue

            current_date = row["date"]
            if task.benchmark == "Average":
                current_score = np.mean(list(row["results"].values()))
            else:
                current_score = row["results"][task.benchmark]

            if current_score > current_max:
                if current_date == last_date and len(scores[column]) > 0:
                    scores[column][-1] = {"model": current_model, "date": current_date, "score": current_score}
                else:
                    scores[column].append({"model": current_model, "date": current_date, "score": current_score})
                current_max = current_score
                last_date = current_date

    # Step 4: Return all dictionaries as DataFrames
    return {k: pd.DataFrame(v) for k, v in scores.items()}


def create_plot_df(scores_df: dict[str: pd.DataFrame]) -> pd.DataFrame:
    """
    Transforms the scores DataFrame into a new format suitable for plotting.

    :param scores_df: A DataFrame containing metric scores and dates.
    :return: A new DataFrame reshaped for plotting purposes.
    """
    # Initialize the list to store DataFrames
    dfs = []

    # Iterate over the cols and create a new DataFrame for each column
    for col in BENCHMARK_COLS + [AutoEvalColumn.average.name]:
        d = scores_df[col].reset_index(drop=True)
        d["task"] = col
        dfs.append(d)

    # Concatenate all the created DataFrames
    concat_df = pd.concat(dfs, ignore_index=True)

    # Sort values by 'date'
    concat_df.sort_values(by="date", inplace=True)
    concat_df.reset_index(drop=True, inplace=True)
    return concat_df


def create_metric_plot_obj(df: pd.DataFrame, metrics: list[str], title: str) -> Figure:
    """
    Create a Plotly figure object with lines representing different metrics
    and horizontal dotted lines representing human baselines.

    :param df: The DataFrame containing the metric values, names, and dates.
    :param metrics: A list of strings representing the names of the metrics
                    to be included in the plot.
    :param title: A string representing the title of the plot.
    :return: A Plotly figure object with lines representing metrics and
             horizontal dotted lines representing human baselines.
    """

    # Filter the DataFrame based on the specified metrics
    df = df[df["task"].isin(metrics)]

    # Filter the human baselines based on the specified metrics
    # filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics}

    # Create a line figure using plotly express with specified markers and custom data
    fig = px.line(
        df,
        x="date",
        y="score",
        color="task",
        markers=True,
        custom_data=["task", "score", "model"],
        title=title,
    )

    # Update hovertemplate for better hover interaction experience
    fig.update_traces(
        hovertemplate="<br>".join(
            [
                "Model Name: %{customdata[2]}",
                "Metric Name: %{customdata[0]}",
                "Date: %{x}",
                "Metric Value: %{y}",
            ]
        )
    )

    # Update the range of the y-axis
    fig.update_layout(yaxis_range=[0, 100])

    # Create a dictionary to hold the color mapping for each metric
    metric_color_mapping = {}

    # Map each metric name to its color in the figure
    for trace in fig.data:
        metric_color_mapping[trace.name] = trace.line.color

    return fig


# Example Usage:
# human_baselines dictionary is defined.
# chart = create_metric_plot_obj(scores_df, ["ARC", "HellaSwag", "MMLU", "TruthfulQA"], human_baselines, "Graph Title")