leaderboard / src /backend /run_eval_suite.py
pminervini's picture
update
ceca114
raw
history blame
2.59 kB
from lm_eval import evaluator
from lm_eval.tasks import TaskManager
from src.backend.manage_requests import EvalRequest
from src.backend.tasks.xsum.task import XSum
from src.backend.tasks.xsum.task_v2 import XSumv2
from src.backend.tasks.cnndm.task import CNNDM
from src.backend.tasks.cnndm.task_v2 import CNNDMv2
from src.backend.tasks.selfcheckgpt.task import SelfCheckGPT
from src.backend.huggingface_generate_until import HFLMwithChatTemplate
def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, use_cache=None, limit=None, max_nb_samples=100) -> dict:
if limit:
print("WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
# include_task_folder("src/backend/tasks/")
# initialize_tasks('INFO')
print(f"Allocating task manager for: {task_names}")
task_manager = TaskManager(include_path="./src/backend/tasks/")
# task_manager.initialize_tasks('INFO')
print(f"Considered Tasks: {task_names}")
# print(f"Allowed Tasks: {tasks.ALL_TASKS}")
# task_names = utils.pattern_match(task_names, tasks.ALL_TASKS)
print(f"Selected Tasks: {task_names}")
print(f"Eval Request: {eval_request.get_model_args()}")
# hf-chat is implemented to use apply_chat_template
results = evaluator.simple_evaluate(model="hf-auto", # "hf-causal-experimental", # "hf-causal", hf-chat
model_args=eval_request.get_model_args(),
tasks=task_names,
num_fewshot=num_fewshot,
batch_size=batch_size,
max_batch_size=8,
device=device,
use_cache=use_cache,
limit=limit,
write_out=True,
task_manager=task_manager)
results["config"]["model_dtype"] = eval_request.precision
results["config"]["model_name"] = eval_request.model
results["config"]["model_sha"] = eval_request.revision
if max_nb_samples is not None:
if 'samples' in results:
samples = results['samples']
for task_name in samples.keys():
if len(samples[task_name]) > max_nb_samples:
results['samples'][task_name] = results['samples'][task_name][:max_nb_samples]
# print(evaluator.make_table(results))
return results