Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
pminervini
commited on
Commit
·
fd975b0
1
Parent(s):
19d09c1
update
Browse files
src/backend/tasks/cnndm/task.py
CHANGED
@@ -2,8 +2,61 @@ from lm_eval.api.task import Task
|
|
2 |
from lm_eval.api.instance import Instance
|
3 |
from lm_eval.api.registry import register_task
|
4 |
from lm_eval.api.metrics import mean
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
@register_task("cnndm")
|
@@ -14,7 +67,14 @@ class CnnDm(Task):
|
|
14 |
|
15 |
def __init__(self, data_dir=None, cache_dir=None, download_mode=None, config=None):
|
16 |
super().__init__(data_dir=data_dir, cache_dir=cache_dir, download_mode=download_mode, config=config)
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def has_training_docs(self):
|
20 |
return True
|
@@ -63,14 +123,44 @@ class CnnDm(Task):
|
|
63 |
Instance(
|
64 |
request_type="generate_until",
|
65 |
doc=doc,
|
66 |
-
arguments=(ctx, {"until": ["\n"
|
67 |
idx=0,
|
68 |
**kwargs
|
69 |
)
|
70 |
]
|
71 |
|
72 |
def process_results(self, doc, results):
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def aggregation(self):
|
76 |
"""
|
|
|
2 |
from lm_eval.api.instance import Instance
|
3 |
from lm_eval.api.registry import register_task
|
4 |
from lm_eval.api.metrics import mean
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import sacrebleu
|
8 |
+
from rouge_score import rouge_scorer, scoring
|
9 |
+
|
10 |
+
|
11 |
+
def bleu(refs, preds):
|
12 |
+
"""
|
13 |
+
Returns `t5` style BLEU scores. See the related implementation:
|
14 |
+
https://github.com/google-research/text-to-text-transfer-transformer/blob/3d10afd51ba97ac29eb66ae701eca274488202f7/t5/evaluation/metrics.py#L41
|
15 |
+
|
16 |
+
:param refs:
|
17 |
+
A `list` of `list` of reference `str`s.
|
18 |
+
:param preds:
|
19 |
+
A `list` of predicted `str`s.
|
20 |
+
"""
|
21 |
+
score = sacrebleu.corpus_bleu(
|
22 |
+
preds,
|
23 |
+
refs,
|
24 |
+
smooth_method="exp",
|
25 |
+
smooth_value=0.0,
|
26 |
+
force=False,
|
27 |
+
lowercase=False,
|
28 |
+
tokenize="intl",
|
29 |
+
use_effective_order=False,
|
30 |
+
).score
|
31 |
+
return score
|
32 |
+
|
33 |
+
|
34 |
+
def rouge(refs, preds):
|
35 |
+
"""
|
36 |
+
Returns `t5` style ROUGE scores. See the related implementation:
|
37 |
+
https://github.com/google-research/text-to-text-transfer-transformer/blob/3d10afd51ba97ac29eb66ae701eca274488202f7/t5/evaluation/metrics.py#L68
|
38 |
+
|
39 |
+
:param refs:
|
40 |
+
A `list` of reference `strs`.
|
41 |
+
:param preds:
|
42 |
+
A `list` of predicted `strs`.
|
43 |
+
"""
|
44 |
+
rouge_types = ["rouge1", "rouge2", "rougeLsum"]
|
45 |
+
scorer = rouge_scorer.RougeScorer(rouge_types)
|
46 |
+
# Add newlines between sentences to correctly compute `rougeLsum`.
|
47 |
+
|
48 |
+
def _prepare_summary(summary):
|
49 |
+
summary = summary.replace(" . ", ".\n")
|
50 |
+
return summary
|
51 |
+
|
52 |
+
# Accumulate confidence intervals.
|
53 |
+
aggregator = scoring.BootstrapAggregator()
|
54 |
+
for ref, pred in zip(refs, preds):
|
55 |
+
ref = _prepare_summary(ref)
|
56 |
+
pred = _prepare_summary(pred)
|
57 |
+
aggregator.add_scores(scorer.score(ref, pred))
|
58 |
+
result = aggregator.aggregate()
|
59 |
+
return {type: result[type].mid.fmeasure * 100 for type in rouge_types}
|
60 |
|
61 |
|
62 |
@register_task("cnndm")
|
|
|
67 |
|
68 |
def __init__(self, data_dir=None, cache_dir=None, download_mode=None, config=None):
|
69 |
super().__init__(data_dir=data_dir, cache_dir=cache_dir, download_mode=download_mode, config=config)
|
70 |
+
self.factkb_tokenizer = None
|
71 |
+
self.factkb_model = None
|
72 |
+
|
73 |
+
def maybe_init_factkb(self):
|
74 |
+
if self.factkb_tokenizer is None or self.factkb_model is None:
|
75 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
76 |
+
self.factkb_tokenizer = AutoTokenizer.from_pretrained("roberta-base", padding="max_length", truncation=True)
|
77 |
+
self.factkb_model = AutoModelForSequenceClassification.from_pretrained("bunsenfeng/FactKB", num_labels=2, device_map="auto")
|
78 |
|
79 |
def has_training_docs(self):
|
80 |
return True
|
|
|
123 |
Instance(
|
124 |
request_type="generate_until",
|
125 |
doc=doc,
|
126 |
+
arguments=(ctx, {"until": ["\n"]}),
|
127 |
idx=0,
|
128 |
**kwargs
|
129 |
)
|
130 |
]
|
131 |
|
132 |
def process_results(self, doc, results):
|
133 |
+
completion = results[0]
|
134 |
+
# true_refs, false_refs = doc["correct_answers"], doc["incorrect_answers"]
|
135 |
+
# all_refs = true_refs + false_refs
|
136 |
+
|
137 |
+
document = doc["article"]
|
138 |
+
true_refs = [doc["highlights"]]
|
139 |
+
all_refs = true_refs
|
140 |
+
|
141 |
+
# ROUGE-N
|
142 |
+
rouge_scores = [rouge([ref], [completion]) for ref in all_refs]
|
143 |
+
# ROUGE-1
|
144 |
+
rouge1_scores = [score["rouge1"] for score in rouge_scores]
|
145 |
+
# ROUGE-2
|
146 |
+
rouge2_scores = [score["rouge2"] for score in rouge_scores]
|
147 |
+
# ROUGE-L
|
148 |
+
rougeL_scores = [score["rougeLsum"] for score in rouge_scores]
|
149 |
+
|
150 |
+
self.maybe_init_factkb()
|
151 |
+
input_factkb = [[completion, document]]
|
152 |
+
factkb_tokens = self.factkb_tokenizer(input_factkb, return_tensors="pt", padding="max_length", truncation=True).to(self.factkb_model.device)
|
153 |
+
factkb_logits = self.factkb_model(**factkb_tokens).logits
|
154 |
+
factkb_res = torch.softmax(factkb_logits, dim=1)
|
155 |
+
|
156 |
+
res = {
|
157 |
+
"rouge1": rouge1_scores[0],
|
158 |
+
"rouge2": rouge2_scores[0],
|
159 |
+
"rougeL": rougeL_scores[0],
|
160 |
+
"factKB": float(factkb_res[0][1])
|
161 |
+
}
|
162 |
+
|
163 |
+
return res
|
164 |
|
165 |
def aggregation(self):
|
166 |
"""
|
src/backend/tasks/cnndm/utils.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
import sacrebleu
|
2 |
-
import numpy as np
|
3 |
-
|
4 |
-
from rouge_score import rouge_scorer, scoring
|
5 |
-
|
6 |
-
|
7 |
-
def process_results(doc, results):
|
8 |
-
# (Pdb)doc.keys()
|
9 |
-
# dict_keys(['document', 'summary', 'id'])
|
10 |
-
# (Pdb++) results
|
11 |
-
# [' The Welsh Government has announced
|
12 |
-
|
13 |
-
# breakpoint()
|
14 |
-
|
15 |
-
completion = results[0]
|
16 |
-
# true_refs, false_refs = doc["correct_answers"], doc["incorrect_answers"]
|
17 |
-
# all_refs = true_refs + false_refs
|
18 |
-
|
19 |
-
document = doc["article"]
|
20 |
-
true_refs = [doc["highlights"]]
|
21 |
-
all_refs = true_refs
|
22 |
-
|
23 |
-
# ROUGE-N
|
24 |
-
rouge_scores = [rouge([ref], [completion]) for ref in all_refs]
|
25 |
-
# ROUGE-1
|
26 |
-
rouge1_scores = [score["rouge1"] for score in rouge_scores]
|
27 |
-
# ROUGE-2
|
28 |
-
rouge2_scores = [score["rouge2"] for score in rouge_scores]
|
29 |
-
# ROUGE-L
|
30 |
-
rougeL_scores = [score["rougeLsum"] for score in rouge_scores]
|
31 |
-
|
32 |
-
res = {
|
33 |
-
"rouge1": rouge1_scores[0],
|
34 |
-
"rouge2": rouge2_scores[0],
|
35 |
-
"rougeL": rougeL_scores[0],
|
36 |
-
}
|
37 |
-
|
38 |
-
return res
|
39 |
-
|
40 |
-
|
41 |
-
def bleu(refs, preds):
|
42 |
-
"""
|
43 |
-
Returns `t5` style BLEU scores. See the related implementation:
|
44 |
-
https://github.com/google-research/text-to-text-transfer-transformer/blob/3d10afd51ba97ac29eb66ae701eca274488202f7/t5/evaluation/metrics.py#L41
|
45 |
-
|
46 |
-
:param refs:
|
47 |
-
A `list` of `list` of reference `str`s.
|
48 |
-
:param preds:
|
49 |
-
A `list` of predicted `str`s.
|
50 |
-
"""
|
51 |
-
score = sacrebleu.corpus_bleu(
|
52 |
-
preds,
|
53 |
-
refs,
|
54 |
-
smooth_method="exp",
|
55 |
-
smooth_value=0.0,
|
56 |
-
force=False,
|
57 |
-
lowercase=False,
|
58 |
-
tokenize="intl",
|
59 |
-
use_effective_order=False,
|
60 |
-
).score
|
61 |
-
return score
|
62 |
-
|
63 |
-
|
64 |
-
def rouge(refs, preds):
|
65 |
-
"""
|
66 |
-
Returns `t5` style ROUGE scores. See the related implementation:
|
67 |
-
https://github.com/google-research/text-to-text-transfer-transformer/blob/3d10afd51ba97ac29eb66ae701eca274488202f7/t5/evaluation/metrics.py#L68
|
68 |
-
|
69 |
-
:param refs:
|
70 |
-
A `list` of reference `strs`.
|
71 |
-
:param preds:
|
72 |
-
A `list` of predicted `strs`.
|
73 |
-
"""
|
74 |
-
rouge_types = ["rouge1", "rouge2", "rougeLsum"]
|
75 |
-
scorer = rouge_scorer.RougeScorer(rouge_types)
|
76 |
-
# Add newlines between sentences to correctly compute `rougeLsum`.
|
77 |
-
|
78 |
-
def _prepare_summary(summary):
|
79 |
-
summary = summary.replace(" . ", ".\n")
|
80 |
-
return summary
|
81 |
-
|
82 |
-
# Accumulate confidence intervals.
|
83 |
-
aggregator = scoring.BootstrapAggregator()
|
84 |
-
for ref, pred in zip(refs, preds):
|
85 |
-
ref = _prepare_summary(ref)
|
86 |
-
pred = _prepare_summary(pred)
|
87 |
-
aggregator.add_scores(scorer.score(ref, pred))
|
88 |
-
result = aggregator.aggregate()
|
89 |
-
return {type: result[type].mid.fmeasure * 100 for type in rouge_types}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|