#!/usr/bin/env python from huggingface_hub import snapshot_download from src.backend.envs import EVAL_REQUESTS_PATH_BACKEND from src.backend.manage_requests import get_eval_requests from src.backend.manage_requests import EvalRequest from src.backend.run_eval_suite import run_evaluation from src.backend.tasks.xsum.task import XSum from src.backend.tasks.selfcheckgpt.task import SelfCheckGpt from lm_eval.tasks import initialize_tasks, include_task_folder from lm_eval import tasks, evaluator, utils from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Task from src.envs import QUEUE_REPO def main(): # snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60) PENDING_STATUS = "PENDING" RUNNING_STATUS = "RUNNING" FINISHED_STATUS = "FINISHED" FAILED_STATUS = "FAILED" status = [PENDING_STATUS, RUNNING_STATUS, FINISHED_STATUS, FAILED_STATUS] # Get all eval request that are FINISHED, if you want to run other evals, change this parameter eval_requests: list[EvalRequest] = get_eval_requests(job_status=status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND) eval_request = [r for r in eval_requests if 'bloom-560m' in r.model][0] # my_task = Task("memo-trap", "acc", "memo-trap", 0) my_task = Task("xsum", "rougeLsum", "XSum", 2) my_task_selfcheckgpt = Task("selfcheckgpt", "max-selfcheckgpt", "selfcheckgpt", 0) TASKS_HARNESS = [my_task, my_task_selfcheckgpt] # task_names = ['triviaqa'] # TASKS_HARNESS = [task.value for task in Tasks] include_task_folder("src/backend/tasks/") initialize_tasks('INFO') # breakpoint() print(tasks.ALL_TASKS) for task in TASKS_HARNESS: print(f"Selected Tasks: [{task}]") results = evaluator.simple_evaluate(model="hf", model_args=eval_request.get_model_args(), tasks=[task.benchmark], num_fewshot=4, batch_size=1, device="mps", use_cache=None, limit=10, write_out=True) print('AAA', results["results"]) breakpoint() if __name__ == "__main__": main()