File size: 21,752 Bytes
f8f62f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
MaskFormer Training Script.

This script is a simplified version of the training script in detectron2/tools.
"""
import copy
import itertools
import logging
import os
from collections import OrderedDict
from typing import Any, Dict, List, Set

import torch

import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog, build_detection_train_loader
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch
from detectron2.evaluation import CityscapesInstanceEvaluator, CityscapesSemSegEvaluator, \
    COCOEvaluator, COCOPanopticEvaluator, DatasetEvaluators, SemSegEvaluator, verify_results, \
    DatasetEvaluator

from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.utils.logger import setup_logger

from detectron2.utils.file_io import PathManager
import numpy as np
from PIL import Image
import glob

import pycocotools.mask as mask_util

from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.utils.comm import all_gather, is_main_process, synchronize
import json
from torch.nn.parallel import DistributedDataParallel
from detectron2.engine.train_loop import AMPTrainer, SimpleTrainer, TrainerBase, HookBase
import weakref
from detectron2.utils.events import EventStorage
from detectron2.utils.logger import _log_api_usage

# from detectron2.evaluation import SemSegGzeroEvaluator
# from mask_former.evaluation.sem_seg_evaluation_gzero import SemSegGzeroEvaluator

class SemSegGzeroEvaluator(DatasetEvaluator):
    """
    Evaluate semantic segmentation metrics.
    """

    def __init__(
        self, dataset_name, distributed, output_dir=None, *, num_classes=None, ignore_label=None
    ):
        """
        Args:
            dataset_name (str): name of the dataset to be evaluated.
            distributed (True): if True, will collect results from all ranks for evaluation.
                Otherwise, will evaluate the results in the current process.
            output_dir (str): an output directory to dump results.
            num_classes, ignore_label: deprecated argument
        """
        self._logger = logging.getLogger(__name__)
        if num_classes is not None:
            self._logger.warn(
                "SemSegEvaluator(num_classes) is deprecated! It should be obtained from metadata."
            )
        if ignore_label is not None:
            self._logger.warn(
                "SemSegEvaluator(ignore_label) is deprecated! It should be obtained from metadata."
            )
        self._dataset_name = dataset_name
        self._distributed = distributed
        self._output_dir = output_dir

        self._cpu_device = torch.device("cpu")

        self.input_file_to_gt_file = {
            dataset_record["file_name"]: dataset_record["sem_seg_file_name"]
            for dataset_record in DatasetCatalog.get(dataset_name)
        }

        meta = MetadataCatalog.get(dataset_name)
        # Dict that maps contiguous training ids to COCO category ids
        try:
            c2d = meta.stuff_dataset_id_to_contiguous_id
            self._contiguous_id_to_dataset_id = {v: k for k, v in c2d.items()}
        except AttributeError:
            self._contiguous_id_to_dataset_id = None
        self._class_names = meta.stuff_classes
        self._val_extra_classes = meta.val_extra_classes
        self._num_classes = len(meta.stuff_classes)
        if num_classes is not None:
            assert self._num_classes == num_classes, f"{self._num_classes} != {num_classes}"
        self._ignore_label = ignore_label if ignore_label is not None else meta.ignore_label

    def reset(self):
        self._conf_matrix = np.zeros((self._num_classes + 1, self._num_classes + 1), dtype=np.int64)
        self._predictions = []

    def process(self, inputs, outputs):
        """
        Args:
            inputs: the inputs to a model.
                It is a list of dicts. Each dict corresponds to an image and
                contains keys like "height", "width", "file_name".
            outputs: the outputs of a model. It is either list of semantic segmentation predictions
                (Tensor [H, W]) or list of dicts with key "sem_seg" that contains semantic
                segmentation prediction in the same format.
        """
        for input, output in zip(inputs, outputs):
            output = output["sem_seg"].argmax(dim=0).to(self._cpu_device)
            pred = np.array(output, dtype=np.int)
            with PathManager.open(self.input_file_to_gt_file[input["file_name"]], "rb") as f:
                gt = np.array(Image.open(f), dtype=np.int)

            gt[gt == self._ignore_label] = self._num_classes

            self._conf_matrix += np.bincount(
                (self._num_classes + 1) * pred.reshape(-1) + gt.reshape(-1),
                minlength=self._conf_matrix.size,
            ).reshape(self._conf_matrix.shape)

            self._predictions.extend(self.encode_json_sem_seg(pred, input["file_name"]))

    def evaluate(self):
        """
        Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval):

        * Mean intersection-over-union averaged across classes (mIoU)
        * Frequency Weighted IoU (fwIoU)
        * Mean pixel accuracy averaged across classes (mACC)
        * Pixel Accuracy (pACC)
        """
        if self._distributed:
            synchronize()
            conf_matrix_list = all_gather(self._conf_matrix)
            self._predictions = all_gather(self._predictions)
            self._predictions = list(itertools.chain(*self._predictions))
            if not is_main_process():
                return

            self._conf_matrix = np.zeros_like(self._conf_matrix)
            for conf_matrix in conf_matrix_list:
                self._conf_matrix += conf_matrix

        if self._output_dir:
            PathManager.mkdirs(self._output_dir)
            file_path = os.path.join(self._output_dir, "sem_seg_predictions.json")
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(self._predictions))

        acc = np.full(self._num_classes, np.nan, dtype=np.float)
        iou = np.full(self._num_classes, np.nan, dtype=np.float)
        tp = self._conf_matrix.diagonal()[:-1].astype(np.float)
        pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(np.float)
        class_weights = pos_gt / np.sum(pos_gt)
        pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(np.float)
        acc_valid = pos_gt > 0
        acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid]
        iou_valid = (pos_gt + pos_pred) > 0
        union = pos_gt + pos_pred - tp
        iou[acc_valid] = tp[acc_valid] / union[acc_valid]
        macc = np.sum(acc[acc_valid]) / np.sum(acc_valid)
        miou = np.sum(iou[acc_valid]) / np.sum(iou_valid)
        fiou = np.sum(iou[acc_valid] * class_weights[acc_valid])
        pacc = np.sum(tp) / np.sum(pos_gt)
        seen_IoU = 0
        unseen_IoU = 0
        seen_acc = 0
        unseen_acc = 0
        res = {}
        res["mIoU"] = 100 * miou
        res["fwIoU"] = 100 * fiou
        for i, name in enumerate(self._class_names):
            res["IoU-{}".format(name)] = 100 * iou[i]
            if name in self._val_extra_classes:
                unseen_IoU = unseen_IoU + 100 * iou[i]
            else:
                seen_IoU = seen_IoU + 100 * iou[i]
        unseen_IoU = unseen_IoU / len(self._val_extra_classes)
        seen_IoU = seen_IoU / (self._num_classes - len(self._val_extra_classes))
        res["mACC"] = 100 * macc
        res["pACC"] = 100 * pacc
        for i, name in enumerate(self._class_names):
            res["ACC-{}".format(name)] = 100 * acc[i]
            if name in self._val_extra_classes:
                unseen_acc = unseen_acc + 100 * iou[i]
            else:
                seen_acc = seen_acc + 100 * iou[i]
        unseen_acc = unseen_acc / len(self._val_extra_classes)
        seen_acc = seen_acc / (self._num_classes - len(self._val_extra_classes))
        res["seen_IoU"] = seen_IoU
        res["unseen_IoU"] = unseen_IoU
        res["harmonic mean"] = 2 * seen_IoU * unseen_IoU / (seen_IoU + unseen_IoU)
        # res["unseen_acc"] = unseen_acc
        # res["seen_acc"] = seen_acc
        if self._output_dir:
            file_path = os.path.join(self._output_dir, "sem_seg_evaluation.pth")
            with PathManager.open(file_path, "wb") as f:
                torch.save(res, f)
        results = OrderedDict({"sem_seg": res})
        self._logger.info(results)
        return results

    def encode_json_sem_seg(self, sem_seg, input_file_name):
        """
        Convert semantic segmentation to COCO stuff format with segments encoded as RLEs.
        See http://cocodataset.org/#format-results
        """
        json_list = []
        for label in np.unique(sem_seg):
            if self._contiguous_id_to_dataset_id is not None:
                # import ipdb; ipdb.set_trace()
                assert (
                    label in self._contiguous_id_to_dataset_id
                ), "Label {} is not in the metadata info for {}".format(label, self._dataset_name)
                dataset_id = self._contiguous_id_to_dataset_id[label]
            else:
                dataset_id = int(label)
            mask = (sem_seg == label).astype(np.uint8)
            mask_rle = mask_util.encode(np.array(mask[:, :, None], order="F"))[0]
            mask_rle["counts"] = mask_rle["counts"].decode("utf-8")
            json_list.append(
                {"file_name": input_file_name, "category_id": dataset_id, "segmentation": mask_rle}
            )
        return json_list


# MaskFormer
from cat_seg import (
    DETRPanopticDatasetMapper,
    MaskFormerPanopticDatasetMapper,
    MaskFormerSemanticDatasetMapper,
    SemanticSegmentorWithTTA,
    add_mask_former_config,
)


def create_ddp_model(model, *, fp16_compression=False, **kwargs):
    """
    Create a DistributedDataParallel model if there are >1 processes.

    Args:
        model: a torch.nn.Module
        fp16_compression: add fp16 compression hooks to the ddp object.
            See more at https://pytorch.org/docs/stable/ddp_comm_hooks.html#torch.distributed.algorithms.ddp_comm_hooks.default_hooks.fp16_compress_hook
        kwargs: other arguments of :module:`torch.nn.parallel.DistributedDataParallel`.
    """  # noqa
    if comm.get_world_size() == 1:
        return model
    if "device_ids" not in kwargs:
        kwargs["device_ids"] = [comm.get_local_rank()]
    ddp = DistributedDataParallel(model, **kwargs)
    if fp16_compression:
        from torch.distributed.algorithms.ddp_comm_hooks import default as comm_hooks

        ddp.register_comm_hook(state=None, hook=comm_hooks.fp16_compress_hook)
    return ddp

class Trainer(DefaultTrainer):
    """
    Extension of the Trainer class adapted to DETR.
    """

    def __init__(self, cfg):
        # super().__init__(cfg)
        self._hooks: List[HookBase] = []
        self.iter: int = 0
        self.start_iter: int = 0
        self.max_iter: int
        self.storage: EventStorage
        _log_api_usage("trainer." + self.__class__.__name__)

        logger = logging.getLogger("detectron2")
        if not logger.isEnabledFor(logging.INFO):  # setup_logger is not called for d2
            setup_logger()
        cfg = DefaultTrainer.auto_scale_workers(cfg, comm.get_world_size())

        # Assume these objects must be constructed in this order.
        model = self.build_model(cfg)
        optimizer = self.build_optimizer(cfg, model)
        data_loader = self.build_train_loader(cfg)

        model = create_ddp_model(model, broadcast_buffers=False,    find_unused_parameters=True)
        self._trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(
            model, data_loader, optimizer
        )

        self.scheduler = self.build_lr_scheduler(cfg, optimizer)
        self.checkpointer = DetectionCheckpointer(
            # Assume you want to save checkpoints together with logs/statistics
            model,
            cfg.OUTPUT_DIR,
            trainer=weakref.proxy(self),
        )
        self.start_iter = 0
        self.max_iter = cfg.SOLVER.MAX_ITER
        self.cfg = cfg

        self.register_hooks(self.build_hooks())

    @classmethod
    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        """
        Create evaluator(s) for a given dataset.
        This uses the special metadata "evaluator_type" associated with each
        builtin dataset. For your own dataset, you can simply create an
        evaluator manually in your script and do not have to worry about the
        hacky if-else logic here.
        """
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
        evaluator_list = []
        evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
        if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"]:
            evaluator_list.append(
                SemSegEvaluator(
                    dataset_name,
                    distributed=True,
                    output_dir=output_folder,
                )
            )
        # import pdb; pdb.set_trace()
        if evaluator_type == "sem_seg_gzero":

            evaluator_list.append(
                SemSegGzeroEvaluator(
                    dataset_name,
                    distributed=True,
                    output_dir=output_folder,
                )
            )
        if evaluator_type == "coco":
            evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
        if evaluator_type in [
            "coco_panoptic_seg",
            "ade20k_panoptic_seg",
            "cityscapes_panoptic_seg",
        ]:
            evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
        if evaluator_type == "cityscapes_instance":
            assert (
                torch.cuda.device_count() >= comm.get_rank()
            ), "CityscapesEvaluator currently do not work with multiple machines."
            return CityscapesInstanceEvaluator(dataset_name)
        if evaluator_type == "cityscapes_sem_seg":
            assert (
                torch.cuda.device_count() >= comm.get_rank()
            ), "CityscapesEvaluator currently do not work with multiple machines."
            return CityscapesSemSegEvaluator(dataset_name)
        if evaluator_type == "cityscapes_panoptic_seg":
            assert (
                torch.cuda.device_count() >= comm.get_rank()
            ), "CityscapesEvaluator currently do not work with multiple machines."
            evaluator_list.append(CityscapesSemSegEvaluator(dataset_name))
        if len(evaluator_list) == 0:
            raise NotImplementedError(
                "no Evaluator for the dataset {} with the type {}".format(
                    dataset_name, evaluator_type
                )
            )
        elif len(evaluator_list) == 1:
            return evaluator_list[0]
        return DatasetEvaluators(evaluator_list)

    @classmethod
    def build_train_loader(cls, cfg):
        # Semantic segmentation dataset mapper
        if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
            mapper = MaskFormerSemanticDatasetMapper(cfg, True)
        # Panoptic segmentation dataset mapper
        elif cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_panoptic":
            mapper = MaskFormerPanopticDatasetMapper(cfg, True)
        # DETR-style dataset mapper for COCO panoptic segmentation
        elif cfg.INPUT.DATASET_MAPPER_NAME == "detr_panoptic":
            mapper = DETRPanopticDatasetMapper(cfg, True)
        else:
            mapper = None
        return build_detection_train_loader(cfg, mapper=mapper)

    @classmethod
    def build_lr_scheduler(cls, cfg, optimizer):
        """
        It now calls :func:`detectron2.solver.build_lr_scheduler`.
        Overwrite it if you'd like a different scheduler.
        """
        return build_lr_scheduler(cfg, optimizer)

    @classmethod
    def build_optimizer(cls, cfg, model):
        weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
        weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED

        defaults = {}
        defaults["lr"] = cfg.SOLVER.BASE_LR
        defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY

        norm_module_types = (
            torch.nn.BatchNorm1d,
            torch.nn.BatchNorm2d,
            torch.nn.BatchNorm3d,
            torch.nn.SyncBatchNorm,
            # NaiveSyncBatchNorm inherits from BatchNorm2d
            torch.nn.GroupNorm,
            torch.nn.InstanceNorm1d,
            torch.nn.InstanceNorm2d,
            torch.nn.InstanceNorm3d,
            torch.nn.LayerNorm,
            torch.nn.LocalResponseNorm,
        )

        params: List[Dict[str, Any]] = []
        memo: Set[torch.nn.parameter.Parameter] = set()
        for module_name, module in model.named_modules():
            for module_param_name, value in module.named_parameters(recurse=False):
                if not value.requires_grad:
                    continue
                # Avoid duplicating parameters
                if value in memo:
                    continue
                memo.add(value)

                hyperparams = copy.copy(defaults)
                if "backbone" in module_name:
                    hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
                if (
                    "relative_position_bias_table" in module_param_name
                    or "absolute_pos_embed" in module_param_name
                ):
                    print(module_param_name)
                    hyperparams["weight_decay"] = 0.0
                if isinstance(module, norm_module_types):
                    hyperparams["weight_decay"] = weight_decay_norm
                if isinstance(module, torch.nn.Embedding):
                    hyperparams["weight_decay"] = weight_decay_embed
                params.append({"params": [value], **hyperparams})

        def maybe_add_full_model_gradient_clipping(optim):
            # detectron2 doesn't have full model gradient clipping now
            clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
            enable = (
                cfg.SOLVER.CLIP_GRADIENTS.ENABLED
                and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
                and clip_norm_val > 0.0
            )

            class FullModelGradientClippingOptimizer(optim):
                def step(self, closure=None):
                    all_params = itertools.chain(*[x["params"] for x in self.param_groups])
                    torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
                    super().step(closure=closure)

            return FullModelGradientClippingOptimizer if enable else optim

        optimizer_type = cfg.SOLVER.OPTIMIZER
        if optimizer_type == "SGD":
            optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
                params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
            )
        elif optimizer_type == "ADAMW":
            optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
                params, cfg.SOLVER.BASE_LR
            )
        else:
            raise NotImplementedError(f"no optimizer type {optimizer_type}")
        if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
            optimizer = maybe_add_gradient_clipping(cfg, optimizer)
        return optimizer

    @classmethod
    def test_with_TTA(cls, cfg, model):
        logger = logging.getLogger("detectron2.trainer")
        # In the end of training, run an evaluation with TTA.
        logger.info("Running inference with test-time augmentation ...")
        model = SemanticSegmentorWithTTA(cfg, model)
        evaluators = [
            cls.build_evaluator(
                cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
            )
            for name in cfg.DATASETS.TEST
        ]
        res = cls.test(cfg, model, evaluators)
        res = OrderedDict({k + "_TTA": v for k, v in res.items()})
        return res


def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    # for poly lr schedule
    add_deeplab_config(cfg)
    add_mask_former_config(cfg)
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    default_setup(cfg, args)
    # Setup logger for "mask_former" module
    setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="mask_former")
    return cfg


def main(args):
    cfg = setup(args)

    if args.eval_only:
        model = Trainer.build_model(cfg)
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        res = Trainer.test(cfg, model)
        if cfg.TEST.AUG.ENABLED:
            res.update(Trainer.test_with_TTA(cfg, model))
        if comm.is_main_process():
            verify_results(cfg, res)
        return res

    trainer = Trainer(cfg)
    trainer.resume_or_load(resume=args.resume)
    return trainer.train()


if __name__ == "__main__":
    args = default_argument_parser().parse_args()
    print("Command Line Args:", args)
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )