File size: 12,471 Bytes
f631117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import typing as tp

import torch

from einops import rearrange
from torch import nn
from torch.nn import functional as F
from x_transformers import ContinuousTransformerWrapper, Encoder

from .blocks import FourierFeatures
from .transformer import ContinuousTransformer
from model.stable import transformer_use_mask


class DiffusionTransformerV2(nn.Module):
    def __init__(self,
                 io_channels=32,
                 patch_size=1,
                 embed_dim=768,
                 cond_token_dim=0,
                 project_cond_tokens=True,
                 global_cond_dim=0,
                 project_global_cond=True,
                 input_concat_dim=0,
                 prepend_cond_dim=0,
                 depth=12,
                 num_heads=8,
                 transformer_type: tp.Literal["x-transformers", "continuous_transformer"] = "x-transformers",
                 global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
                 **kwargs):

        super().__init__()
        d_model = embed_dim
        n_head = num_heads
        n_layers = depth
        encoder_layer = torch.nn.TransformerEncoderLayer(batch_first=True,
                                                         norm_first=True,
                                                         d_model=d_model,
                                                         nhead=n_head)
        self.transformer = torch.nn.TransformerEncoder(encoder_layer, num_layers=n_layers)

        # ===================================== timestep embedding
        timestep_features_dim = 256
        self.timestep_features = FourierFeatures(1, timestep_features_dim)
        self.to_timestep_embed = nn.Sequential(
            nn.Linear(timestep_features_dim, embed_dim, bias=True),
            nn.SiLU(),
            nn.Linear(embed_dim, embed_dim, bias=True),
        )


    def _forward(
            self,
            Xt_btd,
            t, #(1d)
            mu_btd,
            ):

        timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None]))  # (b, embed_dim)
        cated_input = torch.cat([t,mu,x_t])

        ### 1. ιœ€θ¦ι‡ζ–°ε†™θΏ‡δ»₯ι€‚εΊ”δΈεŒι•ΏεΊ¦ηš„con
        if cross_attn_cond is not None:
            cross_attn_cond = self.to_cond_embed(cross_attn_cond)

        if global_embed is not None:
            # Project the global conditioning to the embedding dimension
            global_embed = self.to_global_embed(global_embed)

        prepend_inputs = None
        prepend_mask = None
        prepend_length = 0
        if prepend_cond is not None:
            # Project the prepend conditioning to the embedding dimension
            prepend_cond = self.to_prepend_embed(prepend_cond)

            prepend_inputs = prepend_cond
            if prepend_cond_mask is not None:
                prepend_mask = prepend_cond_mask

        if input_concat_cond is not None:

            # Interpolate input_concat_cond to the same length as x
            if input_concat_cond.shape[2] != x.shape[2]:
                input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2],), mode='nearest')

            x = torch.cat([x, input_concat_cond], dim=1)

        # Get the batch of timestep embeddings
        try:
            timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None]))  # (b, embed_dim)
        except Exception as e:
            print("t.shape:", t.shape, "x.shape", x.shape)
            print("t:", t)
            raise e

        # Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
        if global_embed is not None:
            global_embed = global_embed + timestep_embed
        else:
            global_embed = timestep_embed

        # Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
        if self.global_cond_type == "prepend":
            if prepend_inputs is None:
                # Prepend inputs are just the global embed, and the mask is all ones
                prepend_inputs = global_embed.unsqueeze(1)
                prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
            else:
                # Prepend inputs are the prepend conditioning + the global embed
                prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
                prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)],
                                         dim=1)

            prepend_length = prepend_inputs.shape[1]

        x = self.preprocess_conv(x) + x

        x = rearrange(x, "b c t -> b t c")

        extra_args = {}

        if self.global_cond_type == "adaLN":
            extra_args["global_cond"] = global_embed

        if self.patch_size > 1:
            x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)

        if self.transformer_type == "x-transformers":
            output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond,
                                      context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask,
                                      **extra_args, **kwargs)
        elif self.transformer_type in ["continuous_transformer", "continuous_transformer_with_mask"]:
            output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond,
                                      context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask,
                                      return_info=return_info, **extra_args, **kwargs)

            if return_info:
                output, info = output
        elif self.transformer_type == "mm_transformer":
            output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask,
                                      **extra_args, **kwargs)

        output = rearrange(output, "b t c -> b c t")[:, :, prepend_length:]

        if self.patch_size > 1:
            output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)

        output = self.postprocess_conv(output) + output

        if return_info:
            return output, info

        return output

    def forward(
            self,
            x,
            t,
            cross_attn_cond=None,
            cross_attn_cond_mask=None,
            negative_cross_attn_cond=None,
            negative_cross_attn_mask=None,
            input_concat_cond=None,
            global_embed=None,
            negative_global_embed=None,
            prepend_cond=None,
            prepend_cond_mask=None,
            cfg_scale=1.0,
            cfg_dropout_prob=0.0,
            causal=False,
            scale_phi=0.0,
            mask=None,
            return_info=False,
            **kwargs):

        assert causal == False, "Causal mode is not supported for DiffusionTransformer"

        if cross_attn_cond_mask is not None:
            cross_attn_cond_mask = cross_attn_cond_mask.bool()

            cross_attn_cond_mask = None  # Temporarily disabling conditioning masks due to kernel issue for flash attention

        if prepend_cond_mask is not None:
            prepend_cond_mask = prepend_cond_mask.bool()

        # CFG dropout
        if cfg_dropout_prob > 0.0:
            if cross_attn_cond is not None:
                null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
                dropout_mask = torch.bernoulli(
                    torch.full((cross_attn_cond.shape[0], 1, 1), cfg_dropout_prob, device=cross_attn_cond.device)).to(
                    torch.bool)
                cross_attn_cond = torch.where(dropout_mask, null_embed, cross_attn_cond)

            if prepend_cond is not None:
                null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
                dropout_mask = torch.bernoulli(
                    torch.full((prepend_cond.shape[0], 1, 1), cfg_dropout_prob, device=prepend_cond.device)).to(
                    torch.bool)
                prepend_cond = torch.where(dropout_mask, null_embed, prepend_cond)

        if cfg_scale != 1.0 and (cross_attn_cond is not None or prepend_cond is not None):
            # Classifier-free guidance
            # Concatenate conditioned and unconditioned inputs on the batch dimension
            batch_inputs = torch.cat([x, x], dim=0)
            batch_timestep = torch.cat([t, t], dim=0)

            if global_embed is not None:
                batch_global_cond = torch.cat([global_embed, global_embed], dim=0)
            else:
                batch_global_cond = None

            if input_concat_cond is not None:
                batch_input_concat_cond = torch.cat([input_concat_cond, input_concat_cond], dim=0)
            else:
                batch_input_concat_cond = None

            batch_cond = None
            batch_cond_masks = None

            # Handle CFG for cross-attention conditioning
            if cross_attn_cond is not None:

                null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)

                # For negative cross-attention conditioning, replace the null embed with the negative cross-attention conditioning
                if negative_cross_attn_cond is not None:

                    # If there's a negative cross-attention mask, set the masked tokens to the null embed
                    if negative_cross_attn_mask is not None:
                        negative_cross_attn_mask = negative_cross_attn_mask.to(torch.bool).unsqueeze(2)

                        negative_cross_attn_cond = torch.where(negative_cross_attn_mask, negative_cross_attn_cond,
                                                               null_embed)

                    batch_cond = torch.cat([cross_attn_cond, negative_cross_attn_cond], dim=0)

                else:
                    batch_cond = torch.cat([cross_attn_cond, null_embed], dim=0)

                if cross_attn_cond_mask is not None:
                    batch_cond_masks = torch.cat([cross_attn_cond_mask, cross_attn_cond_mask], dim=0)

            batch_prepend_cond = None
            batch_prepend_cond_mask = None

            if prepend_cond is not None:

                null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)

                batch_prepend_cond = torch.cat([prepend_cond, null_embed], dim=0)

                if prepend_cond_mask is not None:
                    batch_prepend_cond_mask = torch.cat([prepend_cond_mask, prepend_cond_mask], dim=0)

            if mask is not None:
                batch_masks = torch.cat([mask, mask], dim=0)
            else:
                batch_masks = None

            batch_output = self._forward(
                batch_inputs,
                batch_timestep,
                cross_attn_cond=batch_cond,
                cross_attn_cond_mask=batch_cond_masks,
                mask=batch_masks,
                input_concat_cond=batch_input_concat_cond,
                global_embed=batch_global_cond,
                prepend_cond=batch_prepend_cond,
                prepend_cond_mask=batch_prepend_cond_mask,
                return_info=return_info,
                **kwargs)

            if return_info:
                batch_output, info = batch_output

            cond_output, uncond_output = torch.chunk(batch_output, 2, dim=0)
            cfg_output = uncond_output + (cond_output - uncond_output) * cfg_scale

            # CFG Rescale
            if scale_phi != 0.0:
                cond_out_std = cond_output.std(dim=1, keepdim=True)
                out_cfg_std = cfg_output.std(dim=1, keepdim=True)
                output = scale_phi * (cfg_output * (cond_out_std / out_cfg_std)) + (1 - scale_phi) * cfg_output
            else:
                output = cfg_output

            if return_info:
                return output, info

            return output

        else:
            return self._forward(
                x,
                t,
                cross_attn_cond=cross_attn_cond,
                cross_attn_cond_mask=cross_attn_cond_mask,
                input_concat_cond=input_concat_cond,
                global_embed=global_embed,
                prepend_cond=prepend_cond,
                prepend_cond_mask=prepend_cond_mask,
                mask=mask,
                return_info=return_info,
                **kwargs
            )