File size: 11,505 Bytes
5dfaf9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41155a0
 
 
 
5dfaf9b
 
 
 
 
 
 
 
 
 
 
 
 
15c76a9
5dfaf9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41155a0
 
 
 
b363e26
27d95e9
41155a0
5dfaf9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f31d0c8
 
5dfaf9b
f31d0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dfaf9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142aa5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import json
import os.path
import tempfile
import sys
import re
import uuid
import requests
from argparse import ArgumentParser

import torchaudio
from transformers import WhisperFeatureExtractor, AutoTokenizer
from speech_tokenizer.modeling_whisper import WhisperVQEncoder


sys.path.insert(0, "./cosyvoice")
sys.path.insert(0, "./third_party/Matcha-TTS")

from speech_tokenizer.utils import extract_speech_token

import gradio as gr
import torch

audio_token_pattern = re.compile(r"<\|audio_(\d+)\|>")

from flow_inference import AudioDecoder
from audio_process import AudioStreamProcessor

use_local_interface = True  
if use_local_interface :
    from model_server import ModelWorker 

if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int, default="8888")
    parser.add_argument("--flow-path", type=str, default="./glm-4-voice-decoder")
    parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
    parser.add_argument("--tokenizer-path", type= str, default="THUDM/glm-4-voice-tokenizer")
    args = parser.parse_args()

    flow_config = os.path.join(args.flow_path, "config.yaml")
    flow_checkpoint = os.path.join(args.flow_path, 'flow.pt')
    hift_checkpoint = os.path.join(args.flow_path, 'hift.pt')
    glm_tokenizer = None
    device = "cpu"
    audio_decoder: AudioDecoder = None
    whisper_model, feature_extractor = None, None


    def initialize_fn():
        global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer
        if audio_decoder is not None:
            return

        # GLM
        glm_tokenizer = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)

        # Flow & Hift
        audio_decoder = AudioDecoder(config_path=flow_config, flow_ckpt_path=flow_checkpoint,
                                     hift_ckpt_path=hift_checkpoint,
                                     device=device)

        # Speech tokenizer
        whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device)
        feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path)

        global use_local_interface, worker  
        if  use_local_interface :
            model_path0 = 'THUDM/glm-4-voice-9b'
            # dtype = 'bfloat16'
            #device = 'cpu'
            worker = ModelWorker(model_path0,device) 


    def clear_fn():
        return [], [], '', '', '', None, None


    def inference_fn(
            temperature: float,
            top_p: float,
            max_new_token: int,
            input_mode,
            audio_path: str | None,
            input_text: str | None,
            history: list[dict],
            previous_input_tokens: str,
            previous_completion_tokens: str,
    ):

        if input_mode == "audio":
            assert audio_path is not None
            history.append({"role": "user", "content": {"path": audio_path}})
            audio_tokens = extract_speech_token(
                whisper_model, feature_extractor, [audio_path]
            )[0]
            if len(audio_tokens) == 0:
                raise gr.Error("No audio tokens extracted")
            audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens])
            audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>"
            user_input = audio_tokens
            system_prompt = "User will provide you with a speech instruction. Do it step by step. First, think about the instruction and respond in a interleaved manner, with 13 text token followed by 26 audio tokens. "

        else:
            assert input_text is not None
            history.append({"role": "user", "content": input_text})
            user_input = input_text
            system_prompt = "User will provide you with a text instruction. Do it step by step. First, think about the instruction and respond in a interleaved manner, with 13 text token followed by 26 audio tokens."


        # Gather history
        inputs = previous_input_tokens + previous_completion_tokens
        inputs = inputs.strip()
        if "<|system|>" not in inputs:
            inputs += f"<|system|>\n{system_prompt}"
        inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n"
        
        global use_local_interface , worker  
        with torch.no_grad():
            if  use_local_interface :
                params = {  "prompt": inputs,
                            "temperature": temperature,
                            "top_p": top_p,
                            "max_new_tokens": max_new_token, } 
                response = worker.generate_stream( params ) 
                
            else :
                response = requests.post(
                    "http://localhost:10000/generate_stream",
                    data=json.dumps({
                        "prompt": inputs,
                        "temperature": temperature,
                        "top_p": top_p,
                        "max_new_tokens": max_new_token,
                    }),
                    stream=True
                )
            text_tokens, audio_tokens = [], []
            audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>')
            end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>')
            complete_tokens = []
            prompt_speech_feat = torch.zeros(1, 0, 80).to(device)
            flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device)
            this_uuid = str(uuid.uuid4())
            tts_speechs = []
            tts_mels = []
            prev_mel = None
            is_finalize = False
            block_size_list =  [25,50,100,150,200]
            block_size_idx = 0
            block_size = block_size_list[block_size_idx]
            audio_processor = AudioStreamProcessor()
            for chunk in response.iter_lines():
                token_id = json.loads(chunk)["token_id"]
                if token_id == end_token_id:
                    is_finalize = True
                if len(audio_tokens) >= block_size or (is_finalize and audio_tokens):
                    if block_size_idx < len(block_size_list) - 1:
                        block_size_idx += 1
                        block_size = block_size_list[block_size_idx]
                    tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0)

                    if prev_mel is not None:
                        prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2)

                    tts_speech, tts_mel = audio_decoder.token2wav(tts_token, uuid=this_uuid,
                                                                  prompt_token=flow_prompt_speech_token.to(device),
                                                                  prompt_feat=prompt_speech_feat.to(device),
                                                                  finalize=is_finalize)
                    prev_mel = tts_mel

                    audio_bytes = audio_processor.process(tts_speech.clone().cpu().numpy()[0], last=is_finalize)

                    tts_speechs.append(tts_speech.squeeze())
                    tts_mels.append(tts_mel)
                    if audio_bytes:
                        yield history, inputs, '', '', audio_bytes, None
                    flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1)
                    audio_tokens = []
                if not is_finalize:
                    complete_tokens.append(token_id)
                    if token_id >= audio_offset:
                        audio_tokens.append(token_id - audio_offset)
                    else:
                        text_tokens.append(token_id)
        tts_speech = torch.cat(tts_speechs, dim=-1).cpu()
        complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False)
        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
            torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav")
        history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}})
        history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)})
        yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy())


    def update_input_interface(input_mode):
        if input_mode == "audio":
            return [gr.update(visible=True), gr.update(visible=False)]
        else:
            return [gr.update(visible=False), gr.update(visible=True)]


    # Create the Gradio interface
    with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo:
        with gr.Row():
            temperature = gr.Number(
                label="Temperature",
                value=0.2
            )

            top_p = gr.Number(
                label="Top p",
                value=0.8
            )

            max_new_token = gr.Number(
                label="Max new tokens",
                value=2000,
            )

        chatbot = gr.Chatbot(
            elem_id="chatbot",
            bubble_full_width=False,
            type="messages",
            scale=1,
        )

        with gr.Row():
            with gr.Column():
                input_mode = gr.Radio(["audio", "text"], label="Input Mode", value="audio")
                audio = gr.Audio(label="Input audio", type='filepath', show_download_button=True, visible=True)
                text_input = gr.Textbox(label="Input text", placeholder="Enter your text here...", lines=2, visible=False)

            with gr.Column():
                submit_btn = gr.Button("Submit")
                reset_btn = gr.Button("Clear")
                output_audio = gr.Audio(label="Play", streaming=True,
                                        autoplay=True, show_download_button=False)
                complete_audio = gr.Audio(label="Last Output Audio (If Any)", show_download_button=True)



        gr.Markdown("""## Debug Info""")
        with gr.Row():
            input_tokens = gr.Textbox(
                label=f"Input Tokens",
                interactive=False,
            )

            completion_tokens = gr.Textbox(
                label=f"Completion Tokens",
                interactive=False,
            )

        detailed_error = gr.Textbox(
            label=f"Detailed Error",
            interactive=False,
        )

        history_state = gr.State([])

        respond = submit_btn.click(
            inference_fn,
            inputs=[
                temperature,
                top_p,
                max_new_token,
                input_mode,
                audio,
                text_input,
                history_state,
                input_tokens,
                completion_tokens,
            ],
            outputs=[history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio]
        )

        respond.then(lambda s: s, [history_state], chatbot)

        reset_btn.click(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio])
        input_mode.input(clear_fn, outputs=[chatbot, history_state, input_tokens, completion_tokens, detailed_error, output_audio, complete_audio]).then(update_input_interface, inputs=[input_mode], outputs=[audio, text_input])

    initialize_fn()
    # Launch the interface
    demo.launch()