GLM-4-Voice-copy / cosyvoice /flow /stable /transformer_use_mask.py
xyfcc's picture
Upload folder using huggingface_hub
f631117 verified
raw
history blame
27.6 kB
import pdb
from functools import reduce, partial
from packaging import version
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import torch
import torch.nn.functional as F
from torch import nn, einsum
from torch.cuda.amp import autocast
from typing import Callable, Literal
try:
from flash_attn import flash_attn_func, flash_attn_kvpacked_func
except ImportError as e:
print(e)
print('flash_attn not installed, disabling Flash Attention')
flash_attn_kvpacked_func = None
flash_attn_func = None
try:
import natten
except ImportError:
natten = None
def checkpoint(function, *args, **kwargs):
kwargs.setdefault("use_reentrant", False)
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
# Copied and modified from https://github.com/lucidrains/x-transformers/blob/main/x_transformers/attend.py under MIT License
# License can be found in LICENSES/LICENSE_XTRANSFORMERS.txt
def create_causal_mask(i, j, device):
return torch.ones((i, j), device=device, dtype=torch.bool).triu(j - i + 1)
def or_reduce(masks):
head, *body = masks
for rest in body:
head = head | rest
return head
# positional embeddings
class AbsolutePositionalEmbedding(nn.Module):
def __init__(self, dim, max_seq_len):
super().__init__()
self.scale = dim ** -0.5
self.max_seq_len = max_seq_len
self.emb = nn.Embedding(max_seq_len, dim)
def forward(self, x, pos=None, seq_start_pos=None):
seq_len, device = x.shape[1], x.device
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
if pos is None:
pos = torch.arange(seq_len, device=device)
if seq_start_pos is not None:
pos = (pos - seq_start_pos[..., None]).clamp(min=0)
pos_emb = self.emb(pos)
pos_emb = pos_emb * self.scale
return pos_emb
class ScaledSinusoidalEmbedding(nn.Module):
def __init__(self, dim, theta=10000):
super().__init__()
assert (dim % 2) == 0, 'dimension must be divisible by 2'
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
half_dim = dim // 2
freq_seq = torch.arange(half_dim).float() / half_dim
inv_freq = theta ** -freq_seq
self.register_buffer('inv_freq', inv_freq, persistent=False)
def forward(self, x, pos=None, seq_start_pos=None):
seq_len, device = x.shape[1], x.device
if pos is None:
pos = torch.arange(seq_len, device=device)
if seq_start_pos is not None:
pos = pos - seq_start_pos[..., None]
emb = einsum('i, j -> i j', pos, self.inv_freq)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb * self.scale
class RotaryEmbedding(nn.Module):
def __init__(
self,
dim,
use_xpos=False,
scale_base=512,
interpolation_factor=1.,
base=10000,
base_rescale_factor=1.
):
super().__init__()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
base *= base_rescale_factor ** (dim / (dim - 2))
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer('inv_freq', inv_freq)
assert interpolation_factor >= 1.
self.interpolation_factor = interpolation_factor
if not use_xpos:
self.register_buffer('scale', None)
return
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
self.scale_base = scale_base
self.register_buffer('scale', scale)
def forward_from_seq_len(self, seq_len):
device = self.inv_freq.device
t = torch.arange(seq_len, device=device)
return self.forward(t)
@autocast(enabled=False)
def forward(self, t):
device = self.inv_freq.device
t = t.to(torch.float32)
t = t / self.interpolation_factor
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
freqs = torch.cat((freqs, freqs), dim=-1)
if self.scale is None:
return freqs, 1.
power = (torch.arange(seq_len, device=device) - (seq_len // 2)) / self.scale_base
scale = self.scale ** rearrange(power, 'n -> n 1')
scale = torch.cat((scale, scale), dim=-1)
return freqs, scale
def rotate_half(x):
x = rearrange(x, '... (j d) -> ... j d', j=2)
x1, x2 = x.unbind(dim=-2)
return torch.cat((-x2, x1), dim=-1)
@autocast(enabled=False)
def apply_rotary_pos_emb(t, freqs, scale=1):
out_dtype = t.dtype
# cast to float32 if necessary for numerical stability
dtype = reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
freqs, t = freqs.to(dtype), t.to(dtype)
freqs = freqs[-seq_len:, :]
if t.ndim == 4 and freqs.ndim == 3:
freqs = rearrange(freqs, 'b n d -> b 1 n d')
# partial rotary embeddings, Wang et al. GPT-J
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
return torch.cat((t, t_unrotated), dim=-1)
# norms
class LayerNorm(nn.Module):
def __init__(self, dim, bias=False, fix_scale=False):
"""
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
"""
super().__init__()
if fix_scale:
self.register_buffer("gamma", torch.ones(dim))
else:
self.gamma = nn.Parameter(torch.ones(dim))
if bias:
self.beta = nn.Parameter(torch.zeros(dim))
else:
self.register_buffer("beta", torch.zeros(dim))
def forward(self, x):
return F.layer_norm(x, x.shape[-1:], weight=self.gamma, bias=self.beta)
# feedforward
class GLU(nn.Module):
def __init__(
self,
dim_in,
dim_out,
activation: Callable,
use_conv=False,
conv_kernel_size=3,
):
super().__init__()
self.act = activation
self.proj = nn.Linear(dim_in, dim_out * 2) if not use_conv else nn.Conv1d(dim_in, dim_out * 2, conv_kernel_size,
padding=(conv_kernel_size // 2))
self.use_conv = use_conv
def forward(self, x):
if self.use_conv:
x = rearrange(x, 'b n d -> b d n')
x = self.proj(x)
x = rearrange(x, 'b d n -> b n d')
else:
x = self.proj(x)
x, gate = x.chunk(2, dim=-1)
return x * self.act(gate)
class FeedForward(nn.Module):
def __init__(
self,
dim,
dim_out=None,
mult=4,
no_bias=False,
glu=True,
use_conv=False,
conv_kernel_size=3,
zero_init_output=True,
):
super().__init__()
inner_dim = int(dim * mult)
# Default to SwiGLU
activation = nn.SiLU()
dim_out = dim if dim_out is None else dim_out
if glu:
linear_in = GLU(dim, inner_dim, activation)
else:
linear_in = nn.Sequential(
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
nn.Linear(dim, inner_dim, bias=not no_bias) if not use_conv else nn.Conv1d(dim, inner_dim,
conv_kernel_size, padding=(
conv_kernel_size // 2), bias=not no_bias),
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
activation
)
linear_out = nn.Linear(inner_dim, dim_out, bias=not no_bias) if not use_conv else nn.Conv1d(inner_dim, dim_out,
conv_kernel_size,
padding=(
conv_kernel_size // 2),
bias=not no_bias)
# init last linear layer to 0
if zero_init_output:
nn.init.zeros_(linear_out.weight)
if not no_bias:
nn.init.zeros_(linear_out.bias)
self.ff = nn.Sequential(
linear_in,
Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
linear_out,
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
)
def forward(self, x):
return self.ff(x)
class Attention(nn.Module):
def __init__(
self,
dim,
dim_heads=64,
dim_context=None,
causal=False,
zero_init_output=True,
qk_norm: Literal['l2', 'ln', 'none'] = 'none',
natten_kernel_size=None
):
super().__init__()
self.dim = dim
self.dim_heads = dim_heads
self.causal = causal
dim_kv = dim_context if dim_context is not None else dim
self.num_heads = dim // dim_heads
self.kv_heads = dim_kv // dim_heads
if dim_context is not None:
self.to_q = nn.Linear(dim, dim, bias=False)
self.to_kv = nn.Linear(dim_kv, dim_kv * 2, bias=False)
else:
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
self.to_out = nn.Linear(dim, dim, bias=False)
if zero_init_output:
nn.init.zeros_(self.to_out.weight)
self.qk_norm = qk_norm
if self.qk_norm == "ln":
self.q_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
self.k_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
# Using 1d neighborhood attention
self.natten_kernel_size = natten_kernel_size
if natten_kernel_size is not None:
return
self.use_pt_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
self.use_fa_flash = torch.cuda.is_available() and flash_attn_func is not None
# pdb.set_trace()
self.use_fa_flash = False
self.sdp_kwargs = dict(
enable_flash=True,
enable_math=True,
enable_mem_efficient=True
)
def flash_attn(
self,
q,
k,
v,
mask=None,
causal=None
):
batch, heads, q_len, _, k_len, device = *q.shape, k.shape[-2], q.device
kv_heads = k.shape[1]
# Recommended for multi-query single-key-value attention by Tri Dao
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
if heads != kv_heads:
# Repeat interleave kv_heads to match q_heads
heads_per_kv_head = heads // kv_heads
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim=1), (k, v))
if k.ndim == 3:
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
if v.ndim == 3:
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
causal = self.causal if causal is None else causal
if q_len == 1 and causal:
causal = False
if mask is not None:
assert mask.ndim == 4
mask = mask.expand(batch, heads, q_len, k_len)
assert causal
# handle kv cache - this should be bypassable in updated flash attention 2
if k_len > q_len and causal:
causal_mask = create_causal_mask(q_len, k_len, device=device)
if mask is None:
mask = ~causal_mask
else:
mask = mask & ~causal_mask
causal = False
# manually handle causal mask, if another mask was given
row_is_entirely_masked = None
if mask is not None and causal:
causal_mask = create_causal_mask(q_len, k_len, device=device)
mask = mask & ~causal_mask
# protect against an entire row being masked out
row_is_entirely_masked = ~mask.any(dim=-1)
mask[..., 0] = mask[..., 0] | row_is_entirely_masked
causal = False
with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs):
out = F.scaled_dot_product_attention(
q, k, v,
attn_mask=mask,
is_causal=causal
)
# for a row that is entirely masked out, should zero out the output of that row token
if row_is_entirely_masked is not None:
out = out.masked_fill(row_is_entirely_masked[..., None], 0.)
return out
def forward(
self,
x,
context=None,
mask=None,
context_mask=None,
rotary_pos_emb=None,
causal=None
):
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
kv_input = context if has_context else x
if hasattr(self, 'to_q'):
# Use separate linear projections for q and k/v
q = self.to_q(x)
q = rearrange(q, 'b n (h d) -> b h n d', h=h)
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=kv_h), (k, v))
else:
# Use fused linear projection
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
# Normalize q and k for cosine sim attention
if self.qk_norm == "l2":
q = F.normalize(q, dim=-1)
k = F.normalize(k, dim=-1)
elif self.qk_norm == "ln":
q = self.q_norm(q)
k = self.k_norm(k)
if rotary_pos_emb is not None and not has_context:
freqs, _ = rotary_pos_emb
q_dtype = q.dtype
k_dtype = k.dtype
q = q.to(torch.float32)
k = k.to(torch.float32)
freqs = freqs.to(torch.float32)
q = apply_rotary_pos_emb(q, freqs)
k = apply_rotary_pos_emb(k, freqs)
q = q.to(q_dtype)
k = k.to(k_dtype)
input_mask = context_mask
if input_mask is None and not has_context:
input_mask = mask
# determine masking
masks = []
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
if input_mask is not None:
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
masks.append(~input_mask)
# Other masks will be added here later
if len(masks) > 0:
final_attn_mask = ~or_reduce(masks)
n, device = q.shape[-2], q.device
causal = self.causal if causal is None else causal
if n == 1 and causal:
causal = False
if self.natten_kernel_size is not None:
if natten is None:
raise ImportError('natten not installed, please install natten to use neighborhood attention')
dtype_in = q.dtype
q, k, v = map(lambda t: t.to(torch.float32), (q, k, v))
attn = natten.functional.natten1dqk(q, k, kernel_size=self.natten_kernel_size, dilation=1)
if final_attn_mask is not None:
attn = attn.masked_fill(final_attn_mask, -torch.finfo(attn.dtype).max)
attn = F.softmax(attn, dim=-1, dtype=torch.float32)
out = natten.functional.natten1dav(attn, v, kernel_size=self.natten_kernel_size, dilation=1).to(dtype_in)
# Prioritize Flash Attention 2
elif self.use_fa_flash:
assert final_attn_mask is None, 'masking not yet supported for Flash Attention 2'
# Flash Attention 2 requires FP16 inputs
fa_dtype_in = q.dtype
q, k, v = map(lambda t: rearrange(t, 'b h n d -> b n h d').to(torch.float16), (q, k, v))
out = flash_attn_func(q, k, v, causal=causal)
out = rearrange(out.to(fa_dtype_in), 'b n h d -> b h n d')
# Fall back to PyTorch implementation
elif self.use_pt_flash:
# causal=False
# final_attn_mask:[64, 1, 1, 348]
out = self.flash_attn(q, k, v, causal=True, mask=final_attn_mask)
else:
# Fall back to custom implementation
if h != kv_h:
# Repeat interleave kv_heads to match q_heads
heads_per_kv_head = h // kv_h
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim=1), (k, v))
scale = 1. / (q.shape[-1] ** 0.5)
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
i, j, dtype = *dots.shape[-2:], dots.dtype
mask_value = -torch.finfo(dots.dtype).max
if final_attn_mask is not None:
dots = dots.masked_fill(~final_attn_mask, mask_value)
if causal:
causal_mask = create_causal_mask(i, j, device=device)
dots = dots.masked_fill(causal_mask, mask_value)
attn = F.softmax(dots, dim=-1, dtype=torch.float32)
attn = attn.type(dtype)
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
# merge heads
out = rearrange(out, ' b h n d -> b n (h d)')
# Communicate between heads
# with autocast(enabled = False):
# out_dtype = out.dtype
# out = out.to(torch.float32)
# out = self.to_out(out).to(out_dtype)
out = self.to_out(out)
if mask is not None:
mask = rearrange(mask, 'b n -> b n 1')
out = out.masked_fill(~mask, 0.)
return out
class ConformerModule(nn.Module):
def __init__(
self,
dim,
norm_kwargs={},
):
super().__init__()
self.dim = dim
self.in_norm = LayerNorm(dim, **norm_kwargs)
self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
self.glu = GLU(dim, dim, nn.SiLU())
self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
self.mid_norm = LayerNorm(dim,
**norm_kwargs) # This is a batch norm in the original but I don't like batch norm
self.swish = nn.SiLU()
self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
def forward(self, x):
x = self.in_norm(x)
x = rearrange(x, 'b n d -> b d n')
x = self.pointwise_conv(x)
x = rearrange(x, 'b d n -> b n d')
x = self.glu(x)
x = rearrange(x, 'b n d -> b d n')
x = self.depthwise_conv(x)
x = rearrange(x, 'b d n -> b n d')
x = self.mid_norm(x)
x = self.swish(x)
x = rearrange(x, 'b n d -> b d n')
x = self.pointwise_conv_2(x)
x = rearrange(x, 'b d n -> b n d')
return x
class TransformerBlock(nn.Module):
def __init__(
self,
dim,
dim_heads=64,
cross_attend=False,
dim_context=None,
global_cond_dim=None,
causal=False,
zero_init_branch_outputs=True,
conformer=False,
layer_ix=-1,
remove_norms=False,
attn_kwargs={},
ff_kwargs={},
norm_kwargs={}
):
super().__init__()
self.dim = dim
self.dim_heads = dim_heads
self.cross_attend = cross_attend
self.dim_context = dim_context
self.causal = causal
self.pre_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
self.self_attn = Attention(
dim,
dim_heads=dim_heads,
causal=causal,
zero_init_output=zero_init_branch_outputs,
**attn_kwargs
)
### 2. 主要是这边需要修改
if cross_attend:
self.cross_attend_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
self.cross_attn = Attention(
dim,
dim_heads=dim_heads,
dim_context=dim_context,
causal=causal,
zero_init_output=zero_init_branch_outputs,
**attn_kwargs
)
self.ff_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, **ff_kwargs)
self.layer_ix = layer_ix
self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
self.global_cond_dim = global_cond_dim
if global_cond_dim is not None:
self.to_scale_shift_gate = nn.Sequential(
nn.SiLU(),
nn.Linear(global_cond_dim, dim * 6, bias=False)
)
nn.init.zeros_(self.to_scale_shift_gate[1].weight)
# nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
def forward(
self,
x,
context=None,
global_cond=None,
mask=None,
context_mask=None,
rotary_pos_emb=None
):
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(
global_cond).unsqueeze(1).chunk(6, dim=-1)
# self-attention with adaLN
residual = x
x = self.pre_norm(x)
x = x * (1 + scale_self) + shift_self
x = self.self_attn(x, mask=mask, rotary_pos_emb=rotary_pos_emb)
x = x * torch.sigmoid(1 - gate_self)
x = x + residual
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context=context, context_mask=context_mask)
if self.conformer is not None:
x = x + self.conformer(x)
# feedforward with adaLN
residual = x
x = self.ff_norm(x)
x = x * (1 + scale_ff) + shift_ff
x = self.ff(x)
x = x * torch.sigmoid(1 - gate_ff)
x = x + residual
else:
x = x + self.self_attn(self.pre_norm(x), mask=mask, rotary_pos_emb=rotary_pos_emb)
if context is not None:
x = x + self.cross_attn(self.cross_attend_norm(x), context=context, context_mask=context_mask)
if self.conformer is not None:
x = x + self.conformer(x)
x = x + self.ff(self.ff_norm(x))
return x
class ContinuousTransformer(nn.Module):
def __init__(
self,
dim,
depth,
*,
dim_in=None,
dim_out=None,
dim_heads=64,
cross_attend=False,
cond_token_dim=None,
global_cond_dim=None,
causal=False,
rotary_pos_emb=True,
zero_init_branch_outputs=True,
conformer=False,
use_sinusoidal_emb=False,
use_abs_pos_emb=False,
abs_pos_emb_max_length=10000,
**kwargs
):
super().__init__()
self.dim = dim
self.depth = depth
self.causal = causal
self.layers = nn.ModuleList([])
self.project_in = nn.Linear(dim_in, dim, bias=False) if dim_in is not None else nn.Identity()
self.project_out = nn.Linear(dim, dim_out, bias=False) if dim_out is not None else nn.Identity()
if rotary_pos_emb:
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
else:
self.rotary_pos_emb = None
self.use_sinusoidal_emb = use_sinusoidal_emb
if use_sinusoidal_emb:
self.pos_emb = ScaledSinusoidalEmbedding(dim)
self.use_abs_pos_emb = use_abs_pos_emb
if use_abs_pos_emb:
self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
for i in range(depth):
self.layers.append(
TransformerBlock(
dim,
dim_heads=dim_heads,
cross_attend=cross_attend,
dim_context=cond_token_dim,
global_cond_dim=global_cond_dim,
causal=causal,
zero_init_branch_outputs=zero_init_branch_outputs,
conformer=conformer,
layer_ix=i,
**kwargs
)
)
def forward(
self,
x,
mask=None,
prepend_embeds=None,
prepend_mask=None,
global_cond=None,
return_info=False,
**kwargs
):
batch, seq, device = *x.shape[:2], x.device
info = {
"hidden_states": [],
}
x = self.project_in(x)
if prepend_embeds is not None:
prepend_length, prepend_dim = prepend_embeds.shape[1:]
assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
x = torch.cat((prepend_embeds, x), dim=-2)
if prepend_mask is not None or mask is not None:
mask = mask if mask is not None else torch.ones((batch, seq), device=device, dtype=torch.bool)
prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length),
device=device, dtype=torch.bool)
mask = torch.cat((prepend_mask, mask), dim=-1)
# Attention layers
if self.rotary_pos_emb is not None:
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1])
else:
rotary_pos_emb = None
if self.use_sinusoidal_emb or self.use_abs_pos_emb:
x = x + self.pos_emb(x)
# Iterate over the transformer layers
mask = self.refine_mask(mask)
for layer in self.layers:
# x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
# pdb.set_trace()
x = checkpoint(layer, x, mask=mask.bool(), rotary_pos_emb=rotary_pos_emb, global_cond=global_cond, **kwargs)
if return_info:
info["hidden_states"].append(x)
x = self.project_out(x)
if return_info:
return x, info
return x
def refine_mask(self, mask):
return mask
# pdb.set_trace()
# mask = 1 - torch.triu(torch.ones(seq_length, seq_length), diagonal=1)
# return mask