File size: 7,814 Bytes
5664dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#! /usr/bin/env python
import cv2
import numpy as np
import scipy.spatial as spatial
import logging


## 3D Transform
def bilinear_interpolate(img, coords):
    """ Interpolates over every image channel
    http://en.wikipedia.org/wiki/Bilinear_interpolation
    :param img: max 3 channel image
    :param coords: 2 x _m_ array. 1st row = xcoords, 2nd row = ycoords
    :returns: array of interpolated pixels with same shape as coords
    """
    int_coords = np.int32(coords)
    x0, y0 = int_coords
    dx, dy = coords - int_coords

    # 4 Neighour pixels
    q11 = img[y0, x0]
    q21 = img[y0, x0 + 1]
    q12 = img[y0 + 1, x0]
    q22 = img[y0 + 1, x0 + 1]

    btm = q21.T * dx + q11.T * (1 - dx)
    top = q22.T * dx + q12.T * (1 - dx)
    inter_pixel = top * dy + btm * (1 - dy)

    return inter_pixel.T

def grid_coordinates(points):
    """ x,y grid coordinates within the ROI of supplied points
    :param points: points to generate grid coordinates
    :returns: array of (x, y) coordinates
    """
    xmin = np.min(points[:, 0])
    xmax = np.max(points[:, 0]) + 1
    ymin = np.min(points[:, 1])
    ymax = np.max(points[:, 1]) + 1

    return np.asarray([(x, y) for y in range(ymin, ymax)
                       for x in range(xmin, xmax)], np.uint32)


def process_warp(src_img, result_img, tri_affines, dst_points, delaunay):
    """
    Warp each triangle from the src_image only within the
    ROI of the destination image (points in dst_points).
    """
    roi_coords = grid_coordinates(dst_points)
    # indices to vertices. -1 if pixel is not in any triangle
    roi_tri_indices = delaunay.find_simplex(roi_coords)

    for simplex_index in range(len(delaunay.simplices)):
        coords = roi_coords[roi_tri_indices == simplex_index]
        num_coords = len(coords)
        out_coords = np.dot(tri_affines[simplex_index],
                            np.vstack((coords.T, np.ones(num_coords))))
        x, y = coords.T
        result_img[y, x] = bilinear_interpolate(src_img, out_coords)

    return None


def triangular_affine_matrices(vertices, src_points, dst_points):
    """
    Calculate the affine transformation matrix for each
    triangle (x,y) vertex from dst_points to src_points
    :param vertices: array of triplet indices to corners of triangle
    :param src_points: array of [x, y] points to landmarks for source image
    :param dst_points: array of [x, y] points to landmarks for destination image
    :returns: 2 x 3 affine matrix transformation for a triangle
    """
    ones = [1, 1, 1]
    for tri_indices in vertices:
        src_tri = np.vstack((src_points[tri_indices, :].T, ones))
        dst_tri = np.vstack((dst_points[tri_indices, :].T, ones))
        mat = np.dot(src_tri, np.linalg.inv(dst_tri))[:2, :]
        yield mat


def warp_image_3d(src_img, src_points, dst_points, dst_shape, dtype=np.uint8):
    rows, cols = dst_shape[:2]
    result_img = np.zeros((rows, cols, 3), dtype=dtype)

    delaunay = spatial.Delaunay(dst_points)
    tri_affines = np.asarray(list(triangular_affine_matrices(
        delaunay.simplices, src_points, dst_points)))

    process_warp(src_img, result_img, tri_affines, dst_points, delaunay)

    return result_img


## 2D Transform
def transformation_from_points(points1, points2):
    points1 = points1.astype(np.float64)
    points2 = points2.astype(np.float64)

    c1 = np.mean(points1, axis=0)
    c2 = np.mean(points2, axis=0)
    points1 -= c1
    points2 -= c2

    s1 = np.std(points1)
    s2 = np.std(points2)
    points1 /= s1
    points2 /= s2

    U, S, Vt = np.linalg.svd(np.dot(points1.T, points2))
    R = (np.dot(U, Vt)).T

    return np.vstack([np.hstack([s2 / s1 * R,
                                (c2.T - np.dot(s2 / s1 * R, c1.T))[:, np.newaxis]]),
                      np.array([[0., 0., 1.]])])


def warp_image_2d(im, M, dshape):
    output_im = np.zeros(dshape, dtype=im.dtype)
    cv2.warpAffine(im,
                   M[:2],
                   (dshape[1], dshape[0]),
                   dst=output_im,
                   borderMode=cv2.BORDER_TRANSPARENT,
                   flags=cv2.WARP_INVERSE_MAP)

    return output_im


## Generate Mask
def mask_from_points(size, points,erode_flag=1):
    radius = 10  # kernel size
    kernel = np.ones((radius, radius), np.uint8)

    mask = np.zeros(size, np.uint8)
    cv2.fillConvexPoly(mask, cv2.convexHull(points), 255)
    if erode_flag:
        mask = cv2.erode(mask, kernel,iterations=1)

    return mask


## Color Correction
def correct_colours(im1, im2, landmarks1):
    COLOUR_CORRECT_BLUR_FRAC = 0.75
    LEFT_EYE_POINTS = list(range(42, 48))
    RIGHT_EYE_POINTS = list(range(36, 42))

    blur_amount = COLOUR_CORRECT_BLUR_FRAC * np.linalg.norm(
                              np.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -
                              np.mean(landmarks1[RIGHT_EYE_POINTS], axis=0))
    blur_amount = int(blur_amount)
    if blur_amount % 2 == 0:
        blur_amount += 1
    im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
    im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)

    # Avoid divide-by-zero errors.
    im2_blur = im2_blur.astype(int)
    im2_blur += 128*(im2_blur <= 1)

    result = im2.astype(np.float64) * im1_blur.astype(np.float64) / im2_blur.astype(np.float64)
    result = np.clip(result, 0, 255).astype(np.uint8)

    return result


## Copy-and-paste
def apply_mask(img, mask):
    """ Apply mask to supplied image
    :param img: max 3 channel image
    :param mask: [0-255] values in mask
    :returns: new image with mask applied
    """
    masked_img=cv2.bitwise_and(img,img,mask=mask)

    return masked_img


## Alpha blending
def alpha_feathering(src_img, dest_img, img_mask, blur_radius=15):
    mask = cv2.blur(img_mask, (blur_radius, blur_radius))
    mask = mask / 255.0

    result_img = np.empty(src_img.shape, np.uint8)
    for i in range(3):
        result_img[..., i] = src_img[..., i] * mask + dest_img[..., i] * (1-mask)

    return result_img


def check_points(img,points):
    # Todo: I just consider one situation.
    if points[8,1]>img.shape[0]:
        logging.error("Jaw part out of image")
    else:
        return True
    return False


def face_swap(src_face, dst_face, src_points, dst_points, dst_shape, dst_img, args, end=48):
    h, w = dst_face.shape[:2]

    ## 3d warp
    warped_src_face = warp_image_3d(src_face, src_points[:end], dst_points[:end], (h, w))
    ## Mask for blending
    mask = mask_from_points((h, w), dst_points)
    mask_src = np.mean(warped_src_face, axis=2) > 0
    mask = np.asarray(mask * mask_src, dtype=np.uint8)
    ## Correct color
    if args == "correct color":
        warped_src_face = apply_mask(warped_src_face, mask)
        dst_face_masked = apply_mask(dst_face, mask)
        warped_src_face = correct_colours(dst_face_masked, warped_src_face, dst_points)
    ## 2d warp
    if args == "warp_2d":
        unwarped_src_face = warp_image_3d(warped_src_face, dst_points[:end], src_points[:end], src_face.shape[:2])
        warped_src_face = warp_image_2d(unwarped_src_face, transformation_from_points(dst_points, src_points),
                                        (h, w, 3))

        mask = mask_from_points((h, w), dst_points)
        mask_src = np.mean(warped_src_face, axis=2) > 0
        mask = np.asarray(mask * mask_src, dtype=np.uint8)

    ## Shrink the mask
    kernel = np.ones((10, 10), np.uint8)
    mask = cv2.erode(mask, kernel, iterations=1)
    ##Poisson Blending
    r = cv2.boundingRect(mask)
    center = ((r[0] + int(r[2] / 2), r[1] + int(r[3] / 2)))
    output = cv2.seamlessClone(warped_src_face, dst_face, mask, center, cv2.NORMAL_CLONE)

    x, y, w, h = dst_shape
    dst_img_cp = dst_img.copy()
    dst_img_cp[y:y + h, x:x + w] = output

    return dst_img_cp