File size: 20,498 Bytes
efbf861
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523


import datetime
import logging
import os
import platform
import subprocess
import time
from pathlib import Path
import re
import glob
import random
import cv2
import numpy as np
import torch
import torchvision

logger = logging.getLogger(__name__)


def git_describe(path=Path(__file__).parent):  # path must be a directory
    # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
    s = f'git -C {path} describe --tags --long --always'
    try:
        return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
    except subprocess.CalledProcessError as e:
        return ''  # not a git repository

def date_modified(path=__file__):
    # return human-readable file modification date, i.e. '2021-3-26'
    t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
    return f'{t.year}-{t.month}-{t.day}'

def select_device(device='', batch_size=None):
    # device = 'cpu' or '0' or '0,1,2,3'
    s = f'YOLOPv2 🚀 {git_describe() or date_modified()} torch {torch.__version__} '  # string
    cpu = device.lower() == 'cpu'
    if cpu:
        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'  # force torch.cuda.is_available() = False
    elif device:  # non-cpu device requested
        os.environ['CUDA_VISIBLE_DEVICES'] = device  # set environment variable
        assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested'  # check availability

    cuda = not cpu and torch.cuda.is_available()
    if cuda:
        n = torch.cuda.device_count()
        if n > 1 and batch_size:  # check that batch_size is compatible with device_count
            assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
        space = ' ' * len(s)
        for i, d in enumerate(device.split(',') if device else range(n)):
            p = torch.cuda.get_device_properties(i)
            s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n"  # bytes to MB
    else:
        s += 'CPU\n'

    logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s)  # emoji-safe
    return torch.device('cuda:0' if cuda else 'cpu')


def time_synchronized():
    # pytorch-accurate time
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    return time.time()

def plot_one_box(x, img, color=None, label=None, line_thickness=3):
    # Plots one bounding box on image img
    tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thickness
    color = color or [random.randint(0, 255) for _ in range(3)]
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, [0,255,255], thickness=2, lineType=cv2.LINE_AA)
    if label:
        tf = max(tl - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3

class SegmentationMetric(object):
    '''
    imgLabel [batch_size, height(144), width(256)]
    confusionMatrix [[0(TN),1(FP)],
                     [2(FN),3(TP)]]
    '''
    def __init__(self, numClass):
        self.numClass = numClass
        self.confusionMatrix = np.zeros((self.numClass,)*2)

    def pixelAccuracy(self):
        # return all class overall pixel accuracy
        # acc = (TP + TN) / (TP + TN + FP + TN)
        acc = np.diag(self.confusionMatrix).sum() /  self.confusionMatrix.sum()
        return acc
        
    def lineAccuracy(self):
        Acc = np.diag(self.confusionMatrix) / (self.confusionMatrix.sum(axis=1) + 1e-12)
        return Acc[1]

    def classPixelAccuracy(self):
        # return each category pixel accuracy(A more accurate way to call it precision)
        # acc = (TP) / TP + FP
        classAcc = np.diag(self.confusionMatrix) / (self.confusionMatrix.sum(axis=0) + 1e-12)
        return classAcc

    def meanPixelAccuracy(self):
        classAcc = self.classPixelAccuracy()
        meanAcc = np.nanmean(classAcc)
        return meanAcc

    def meanIntersectionOverUnion(self):
        # Intersection = TP Union = TP + FP + FN
        # IoU = TP / (TP + FP + FN)
        intersection = np.diag(self.confusionMatrix)
        union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)
        IoU = intersection / union
        IoU[np.isnan(IoU)] = 0
        mIoU = np.nanmean(IoU)
        return mIoU
    
    def IntersectionOverUnion(self):
        intersection = np.diag(self.confusionMatrix)
        union = np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) - np.diag(self.confusionMatrix)
        IoU = intersection / union
        IoU[np.isnan(IoU)] = 0
        return IoU[1]

    def genConfusionMatrix(self, imgPredict, imgLabel):
        # remove classes from unlabeled pixels in gt image and predict
        # print(imgLabel.shape)
        mask = (imgLabel >= 0) & (imgLabel < self.numClass)
        label = self.numClass * imgLabel[mask] + imgPredict[mask]
        count = np.bincount(label, minlength=self.numClass**2)
        confusionMatrix = count.reshape(self.numClass, self.numClass)
        return confusionMatrix

    def Frequency_Weighted_Intersection_over_Union(self):
        # FWIOU =     [(TP+FN)/(TP+FP+TN+FN)] *[TP / (TP + FP + FN)]
        freq = np.sum(self.confusionMatrix, axis=1) / np.sum(self.confusionMatrix)
        iu = np.diag(self.confusionMatrix) / (
                np.sum(self.confusionMatrix, axis=1) + np.sum(self.confusionMatrix, axis=0) -
                np.diag(self.confusionMatrix))
        FWIoU = (freq[freq > 0] * iu[freq > 0]).sum()
        return FWIoU


    def addBatch(self, imgPredict, imgLabel):
        assert imgPredict.shape == imgLabel.shape
        self.confusionMatrix += self.genConfusionMatrix(imgPredict, imgLabel)

    def reset(self):
        self.confusionMatrix = np.zeros((self.numClass, self.numClass))

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count if self.count != 0 else 0

def _make_grid(nx=20, ny=20):
        yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
    
def split_for_trace_model(pred = None, anchor_grid = None):
    z = []
    st = [8,16,32]
    for i in range(3):
        bs, _, ny, nx = pred[i].shape  
        pred[i] = pred[i].view(bs, 3, 85, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
        y = pred[i].sigmoid()
        gr = _make_grid(nx, ny).to(pred[i].device)
        y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + gr) * st[i]  # xy
        y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * anchor_grid[i]  # wh
        z.append(y.view(bs, -1, 85))
    pred = torch.cat(z, 1)
    return pred

def show_seg_result(img, result, palette=None,is_demo=False):

    if palette is None:
        palette = np.random.randint(
                0, 255, size=(3, 3))
    palette[0] = [0, 0, 0]
    palette[1] = [0, 255, 0]
    palette[2] = [255, 0, 0]
    palette = np.array(palette)
    assert palette.shape[0] == 3 # len(classes)
    assert palette.shape[1] == 3
    assert len(palette.shape) == 2
    
    if not is_demo:
        color_seg = np.zeros((result.shape[0], result.shape[1], 3), dtype=np.uint8)
        for label, color in enumerate(palette):
            color_seg[result == label, :] = color
    else:
        color_area = np.zeros((result[0].shape[0], result[0].shape[1], 3), dtype=np.uint8)
        
        color_area[result[0] == 1] = [0, 255, 0]
        color_area[result[1] ==1] = [255, 0, 0]
        color_seg = color_area

    # convert to BGR
    color_seg = color_seg[..., ::-1]
    # print(color_seg.shape)
    color_mask = np.mean(color_seg, 2)
    img[color_mask != 0] = img[color_mask != 0] * 0.5 + color_seg[color_mask != 0] * 0.5
    # img = img * 0.5 + color_seg * 0.5
    #img = img.astype(np.uint8)
    #img = cv2.resize(img, (1280,720), interpolation=cv2.INTER_LINEAR)
    return 


def increment_path(path, exist_ok=True, sep=''):
    # Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
    path = Path(path)  # os-agnostic
    if (path.exists() and exist_ok) or (not path.exists()):
        return str(path)
    else:
        dirs = glob.glob(f"{path}{sep}*")  # similar paths
        matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
        i = [int(m.groups()[0]) for m in matches if m]  # indices
        n = max(i) + 1 if i else 2  # increment number
        return f"{path}{sep}{n}"  # update path

def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    coords[:, [0, 2]] -= pad[0]  # x padding
    coords[:, [1, 3]] -= pad[1]  # y padding
    coords[:, :4] /= gain
    clip_coords(coords, img0_shape)
    return coords


def clip_coords(boxes, img_shape):
    # Clip bounding xyxy bounding boxes to image shape (height, width)
    boxes[:, 0].clamp_(0, img_shape[1])  # x1
    boxes[:, 1].clamp_(0, img_shape[0])  # y1
    boxes[:, 2].clamp_(0, img_shape[1])  # x2
    boxes[:, 3].clamp_(0, img_shape[0])  # y2

def set_logging(rank=-1):
    logging.basicConfig(
        format="%(message)s",
        level=logging.INFO if rank in [-1, 0] else logging.WARN)

def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y

def xyxy2xywh(x):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
    y[:, 2] = x[:, 2] - x[:, 0]  # width
    y[:, 3] = x[:, 3] - x[:, 1]  # height
    return y

def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
                        labels=()):
    """Runs Non-Maximum Suppression (NMS) on inference results
    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """

    nc = prediction.shape[2] - 5  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Settings
    min_wh, max_wh = 2, 4096  # (pixels) minimum and maximum box width and height
    max_det = 300  # maximum number of detections per image
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 10.0  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            l = labels[xi]
            v = torch.zeros((len(l), nc + 5), device=x.device)
            v[:, :4] = l[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(l)), l[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
        box = xywh2xyxy(x[:, :4])

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
        else:  # best class only
            conf, j = x[:, 5:].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        elif n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        if i.shape[0] > max_det:  # limit detections
            i = i[:max_det]
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if (time.time() - t) > time_limit:
            print(f'WARNING: NMS time limit {time_limit}s exceeded')
            break  # time limit exceeded

    return output

def box_iou(box1, box2):
    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
    """
    Return intersection-over-union (Jaccard index) of boxes.
    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
    Arguments:
        box1 (Tensor[N, 4])
        box2 (Tensor[M, 4])
    Returns:
        iou (Tensor[N, M]): the NxM matrix containing the pairwise
            IoU values for every element in boxes1 and boxes2
    """

    def box_area(box):
        # box = 4xn
        return (box[2] - box[0]) * (box[3] - box[1])

    area1 = box_area(box1.T)
    area2 = box_area(box2.T)

    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
    return inter / (area1[:, None] + area2 - inter)  # iou = inter / (area1 + area2 - inter)

class LoadImages:  # for inference
    def __init__(self, path, img_size=640, stride=32):
        p = str(Path(path).absolute())  # os-agnostic absolute path
        if '*' in p:
            files = sorted(glob.glob(p, recursive=True))  # glob
        elif os.path.isdir(p):
            files = sorted(glob.glob(os.path.join(p, '*.*')))  # dir
        elif os.path.isfile(p):
            files = [p]  # files
        else:
            raise Exception(f'ERROR: {p} does not exist')

        img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo']  # acceptable image suffixes
        vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv']  # acceptable video suffixes
        images = [x for x in files if x.split('.')[-1].lower() in img_formats]
        videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
        ni, nv = len(images), len(videos)

        self.img_size = img_size
        self.stride = stride
        self.files = images + videos
        self.nf = ni + nv  # number of files
        self.video_flag = [False] * ni + [True] * nv
        self.mode = 'image'
        if any(videos):
            self.new_video(videos[0])  # new video
        else:
            self.cap = None
        assert self.nf > 0, f'No images or videos found in {p}. ' \
                            f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'

    def __iter__(self):
        self.count = 0
        return self

    def __next__(self):
        if self.count == self.nf:
            raise StopIteration
        path = self.files[self.count]

        if self.video_flag[self.count]:
            # Read video
            self.mode = 'video'
            ret_val, img0 = self.cap.read()
            if not ret_val:
                self.count += 1
                self.cap.release()
                if self.count == self.nf:  # last video
                    raise StopIteration
                else:
                    path = self.files[self.count]
                    self.new_video(path)
                    ret_val, img0 = self.cap.read()

            self.frame += 1
            print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.nframes}) {path}: ', end='')

        else:
            # Read image
            self.count += 1
            img0 = cv2.imread(path)  # BGR
            assert img0 is not None, 'Image Not Found ' + path
            #print(f'image {self.count}/{self.nf} {path}: ', end='')

        # Padded resize
        img0 = cv2.resize(img0, (1280,720), interpolation=cv2.INTER_LINEAR)
        img = letterbox(img0, self.img_size, stride=self.stride)[0]

        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)

        return path, img, img0, self.cap

    def new_video(self, path):
        self.frame = 0
        self.cap = cv2.VideoCapture(path)
        self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))

    def __len__(self):
        return self.nf  # number of files

def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = img.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)
    #print(sem_img.shape)
    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])

    if not scaleup:  # only scale down, do not scale up (for better test mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
     
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))

    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    
    return img, ratio, (dw, dh)

def driving_area_mask(seg = None):
    da_predict = seg[:, :, 12:372,:]
    da_seg_mask = torch.nn.functional.interpolate(da_predict, scale_factor=2, mode='bilinear')
    _, da_seg_mask = torch.max(da_seg_mask, 1)
    da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy()
    return da_seg_mask

def lane_line_mask(ll = None):
    ll_predict = ll[:, :, 12:372,:]
    ll_seg_mask = torch.nn.functional.interpolate(ll_predict, scale_factor=2, mode='bilinear')
    ll_seg_mask = torch.round(ll_seg_mask).squeeze(1)
    ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy()
    return ll_seg_mask