Spaces:
Runtime error
Runtime error
Delete vietocr/model
Browse files- vietocr/model/__init__.py +0 -0
- vietocr/model/__pycache__/__init__.cpython-311.pyc +0 -0
- vietocr/model/__pycache__/beam.cpython-311.pyc +0 -0
- vietocr/model/__pycache__/trainer.cpython-311.pyc +0 -0
- vietocr/model/__pycache__/transformerocr.cpython-311.pyc +0 -0
- vietocr/model/__pycache__/vocab.cpython-311.pyc +0 -0
- vietocr/model/backbone/__init__.py +0 -0
- vietocr/model/backbone/__pycache__/__init__.cpython-311.pyc +0 -0
- vietocr/model/backbone/__pycache__/cnn.cpython-311.pyc +0 -0
- vietocr/model/backbone/__pycache__/resnet.cpython-311.pyc +0 -0
- vietocr/model/backbone/__pycache__/vgg.cpython-311.pyc +0 -0
- vietocr/model/backbone/cnn.py +0 -28
- vietocr/model/backbone/resnet.py +0 -140
- vietocr/model/backbone/vgg.py +0 -50
- vietocr/model/seqmodel/__init__.py +0 -0
- vietocr/model/seqmodel/__pycache__/__init__.cpython-311.pyc +0 -0
- vietocr/model/seqmodel/__pycache__/convseq2seq.cpython-311.pyc +0 -0
- vietocr/model/seqmodel/__pycache__/seq2seq.cpython-311.pyc +0 -0
- vietocr/model/seqmodel/__pycache__/transformer.cpython-311.pyc +0 -0
- vietocr/model/seqmodel/convseq2seq.py +0 -324
- vietocr/model/seqmodel/seq2seq.py +0 -175
- vietocr/model/seqmodel/transformer.py +0 -124
- vietocr/model/transformerocr.py +0 -44
- vietocr/model/vocab.py +0 -36
vietocr/model/__init__.py
DELETED
File without changes
|
vietocr/model/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (174 Bytes)
|
|
vietocr/model/__pycache__/beam.cpython-311.pyc
DELETED
Binary file (6.02 kB)
|
|
vietocr/model/__pycache__/trainer.cpython-311.pyc
DELETED
Binary file (22.2 kB)
|
|
vietocr/model/__pycache__/transformerocr.cpython-311.pyc
DELETED
Binary file (2.44 kB)
|
|
vietocr/model/__pycache__/vocab.cpython-311.pyc
DELETED
Binary file (3.27 kB)
|
|
vietocr/model/backbone/__init__.py
DELETED
File without changes
|
vietocr/model/backbone/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (183 Bytes)
|
|
vietocr/model/backbone/__pycache__/cnn.cpython-311.pyc
DELETED
Binary file (2.18 kB)
|
|
vietocr/model/backbone/__pycache__/resnet.cpython-311.pyc
DELETED
Binary file (9.41 kB)
|
|
vietocr/model/backbone/__pycache__/vgg.cpython-311.pyc
DELETED
Binary file (3.06 kB)
|
|
vietocr/model/backbone/cnn.py
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
|
4 |
-
import vietocr.model.backbone.vgg as vgg
|
5 |
-
from vietocr.model.backbone.resnet import Resnet50
|
6 |
-
|
7 |
-
class CNN(nn.Module):
|
8 |
-
def __init__(self, backbone, **kwargs):
|
9 |
-
super(CNN, self).__init__()
|
10 |
-
|
11 |
-
if backbone == 'vgg11_bn':
|
12 |
-
self.model = vgg.vgg11_bn(**kwargs)
|
13 |
-
elif backbone == 'vgg19_bn':
|
14 |
-
self.model = vgg.vgg19_bn(**kwargs)
|
15 |
-
elif backbone == 'resnet50':
|
16 |
-
self.model = Resnet50(**kwargs)
|
17 |
-
|
18 |
-
def forward(self, x):
|
19 |
-
return self.model(x)
|
20 |
-
|
21 |
-
def freeze(self):
|
22 |
-
for name, param in self.model.features.named_parameters():
|
23 |
-
if name != 'last_conv_1x1':
|
24 |
-
param.requires_grad = False
|
25 |
-
|
26 |
-
def unfreeze(self):
|
27 |
-
for param in self.model.features.parameters():
|
28 |
-
param.requires_grad = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vietocr/model/backbone/resnet.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
|
4 |
-
class BasicBlock(nn.Module):
|
5 |
-
expansion = 1
|
6 |
-
|
7 |
-
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
8 |
-
super(BasicBlock, self).__init__()
|
9 |
-
self.conv1 = self._conv3x3(inplanes, planes)
|
10 |
-
self.bn1 = nn.BatchNorm2d(planes)
|
11 |
-
self.conv2 = self._conv3x3(planes, planes)
|
12 |
-
self.bn2 = nn.BatchNorm2d(planes)
|
13 |
-
self.relu = nn.ReLU(inplace=True)
|
14 |
-
self.downsample = downsample
|
15 |
-
self.stride = stride
|
16 |
-
|
17 |
-
def _conv3x3(self, in_planes, out_planes, stride=1):
|
18 |
-
"3x3 convolution with padding"
|
19 |
-
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
20 |
-
padding=1, bias=False)
|
21 |
-
|
22 |
-
def forward(self, x):
|
23 |
-
residual = x
|
24 |
-
|
25 |
-
out = self.conv1(x)
|
26 |
-
out = self.bn1(out)
|
27 |
-
out = self.relu(out)
|
28 |
-
|
29 |
-
out = self.conv2(out)
|
30 |
-
out = self.bn2(out)
|
31 |
-
|
32 |
-
if self.downsample is not None:
|
33 |
-
residual = self.downsample(x)
|
34 |
-
out += residual
|
35 |
-
out = self.relu(out)
|
36 |
-
|
37 |
-
return out
|
38 |
-
|
39 |
-
class ResNet(nn.Module):
|
40 |
-
|
41 |
-
def __init__(self, input_channel, output_channel, block, layers):
|
42 |
-
super(ResNet, self).__init__()
|
43 |
-
|
44 |
-
self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel]
|
45 |
-
|
46 |
-
self.inplanes = int(output_channel / 8)
|
47 |
-
self.conv0_1 = nn.Conv2d(input_channel, int(output_channel / 16),
|
48 |
-
kernel_size=3, stride=1, padding=1, bias=False)
|
49 |
-
self.bn0_1 = nn.BatchNorm2d(int(output_channel / 16))
|
50 |
-
self.conv0_2 = nn.Conv2d(int(output_channel / 16), self.inplanes,
|
51 |
-
kernel_size=3, stride=1, padding=1, bias=False)
|
52 |
-
self.bn0_2 = nn.BatchNorm2d(self.inplanes)
|
53 |
-
self.relu = nn.ReLU(inplace=True)
|
54 |
-
|
55 |
-
self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
56 |
-
self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0])
|
57 |
-
self.conv1 = nn.Conv2d(self.output_channel_block[0], self.output_channel_block[
|
58 |
-
0], kernel_size=3, stride=1, padding=1, bias=False)
|
59 |
-
self.bn1 = nn.BatchNorm2d(self.output_channel_block[0])
|
60 |
-
|
61 |
-
self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
62 |
-
self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1)
|
63 |
-
self.conv2 = nn.Conv2d(self.output_channel_block[1], self.output_channel_block[
|
64 |
-
1], kernel_size=3, stride=1, padding=1, bias=False)
|
65 |
-
self.bn2 = nn.BatchNorm2d(self.output_channel_block[1])
|
66 |
-
|
67 |
-
self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1))
|
68 |
-
self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1)
|
69 |
-
self.conv3 = nn.Conv2d(self.output_channel_block[2], self.output_channel_block[
|
70 |
-
2], kernel_size=3, stride=1, padding=1, bias=False)
|
71 |
-
self.bn3 = nn.BatchNorm2d(self.output_channel_block[2])
|
72 |
-
|
73 |
-
self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1)
|
74 |
-
self.conv4_1 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
|
75 |
-
3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False)
|
76 |
-
self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3])
|
77 |
-
self.conv4_2 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[
|
78 |
-
3], kernel_size=2, stride=1, padding=0, bias=False)
|
79 |
-
self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3])
|
80 |
-
|
81 |
-
def _make_layer(self, block, planes, blocks, stride=1):
|
82 |
-
downsample = None
|
83 |
-
if stride != 1 or self.inplanes != planes * block.expansion:
|
84 |
-
downsample = nn.Sequential(
|
85 |
-
nn.Conv2d(self.inplanes, planes * block.expansion,
|
86 |
-
kernel_size=1, stride=stride, bias=False),
|
87 |
-
nn.BatchNorm2d(planes * block.expansion),
|
88 |
-
)
|
89 |
-
|
90 |
-
layers = []
|
91 |
-
layers.append(block(self.inplanes, planes, stride, downsample))
|
92 |
-
self.inplanes = planes * block.expansion
|
93 |
-
for i in range(1, blocks):
|
94 |
-
layers.append(block(self.inplanes, planes))
|
95 |
-
|
96 |
-
return nn.Sequential(*layers)
|
97 |
-
|
98 |
-
def forward(self, x):
|
99 |
-
x = self.conv0_1(x)
|
100 |
-
x = self.bn0_1(x)
|
101 |
-
x = self.relu(x)
|
102 |
-
x = self.conv0_2(x)
|
103 |
-
x = self.bn0_2(x)
|
104 |
-
x = self.relu(x)
|
105 |
-
|
106 |
-
x = self.maxpool1(x)
|
107 |
-
x = self.layer1(x)
|
108 |
-
x = self.conv1(x)
|
109 |
-
x = self.bn1(x)
|
110 |
-
x = self.relu(x)
|
111 |
-
|
112 |
-
x = self.maxpool2(x)
|
113 |
-
x = self.layer2(x)
|
114 |
-
x = self.conv2(x)
|
115 |
-
x = self.bn2(x)
|
116 |
-
x = self.relu(x)
|
117 |
-
|
118 |
-
x = self.maxpool3(x)
|
119 |
-
x = self.layer3(x)
|
120 |
-
x = self.conv3(x)
|
121 |
-
x = self.bn3(x)
|
122 |
-
x = self.relu(x)
|
123 |
-
|
124 |
-
x = self.layer4(x)
|
125 |
-
x = self.conv4_1(x)
|
126 |
-
x = self.bn4_1(x)
|
127 |
-
x = self.relu(x)
|
128 |
-
x = self.conv4_2(x)
|
129 |
-
x = self.bn4_2(x)
|
130 |
-
conv = self.relu(x)
|
131 |
-
|
132 |
-
conv = conv.transpose(-1, -2)
|
133 |
-
conv = conv.flatten(2)
|
134 |
-
conv = conv.permute(-1, 0, 1)
|
135 |
-
|
136 |
-
return conv
|
137 |
-
|
138 |
-
def Resnet50(ss, hidden):
|
139 |
-
return ResNet(3, hidden, BasicBlock, [1, 2, 5, 3])
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vietocr/model/backbone/vgg.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
from torchvision import models
|
4 |
-
from einops import rearrange
|
5 |
-
from torchvision.models._utils import IntermediateLayerGetter
|
6 |
-
|
7 |
-
|
8 |
-
class Vgg(nn.Module):
|
9 |
-
def __init__(self, name, ss, ks, hidden, pretrained=True, dropout=0.5):
|
10 |
-
super(Vgg, self).__init__()
|
11 |
-
|
12 |
-
if name == 'vgg11_bn':
|
13 |
-
cnn = models.vgg11_bn(weights='DEFAULT')
|
14 |
-
elif name == 'vgg19_bn':
|
15 |
-
cnn = models.vgg19_bn(weights='DEFAULT')
|
16 |
-
|
17 |
-
pool_idx = 0
|
18 |
-
|
19 |
-
for i, layer in enumerate(cnn.features):
|
20 |
-
if isinstance(layer, torch.nn.MaxPool2d):
|
21 |
-
cnn.features[i] = torch.nn.AvgPool2d(kernel_size=ks[pool_idx], stride=ss[pool_idx], padding=0)
|
22 |
-
pool_idx += 1
|
23 |
-
|
24 |
-
self.features = cnn.features
|
25 |
-
self.dropout = nn.Dropout(dropout)
|
26 |
-
self.last_conv_1x1 = nn.Conv2d(512, hidden, 1)
|
27 |
-
|
28 |
-
def forward(self, x):
|
29 |
-
"""
|
30 |
-
Shape:
|
31 |
-
- x: (N, C, H, W)
|
32 |
-
- output: (W, N, C)
|
33 |
-
"""
|
34 |
-
|
35 |
-
conv = self.features(x)
|
36 |
-
conv = self.dropout(conv)
|
37 |
-
conv = self.last_conv_1x1(conv)
|
38 |
-
|
39 |
-
# conv = rearrange(conv, 'b d h w -> b d (w h)')
|
40 |
-
conv = conv.transpose(-1, -2)
|
41 |
-
conv = conv.flatten(2)
|
42 |
-
conv = conv.permute(-1, 0, 1)
|
43 |
-
return conv
|
44 |
-
|
45 |
-
def vgg11_bn(ss, ks, hidden, pretrained=True, dropout=0.5):
|
46 |
-
return Vgg('vgg11_bn', ss, ks, hidden, pretrained, dropout)
|
47 |
-
|
48 |
-
def vgg19_bn(ss, ks, hidden, pretrained=True, dropout=0.5):
|
49 |
-
return Vgg('vgg19_bn', ss, ks, hidden, pretrained, dropout)
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vietocr/model/seqmodel/__init__.py
DELETED
File without changes
|
vietocr/model/seqmodel/__pycache__/__init__.cpython-311.pyc
DELETED
Binary file (183 Bytes)
|
|
vietocr/model/seqmodel/__pycache__/convseq2seq.cpython-311.pyc
DELETED
Binary file (10.7 kB)
|
|
vietocr/model/seqmodel/__pycache__/seq2seq.cpython-311.pyc
DELETED
Binary file (9.79 kB)
|
|
vietocr/model/seqmodel/__pycache__/transformer.cpython-311.pyc
DELETED
Binary file (10.2 kB)
|
|
vietocr/model/seqmodel/convseq2seq.py
DELETED
@@ -1,324 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.optim as optim
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
class Encoder(nn.Module):
|
7 |
-
def __init__(self,
|
8 |
-
emb_dim,
|
9 |
-
hid_dim,
|
10 |
-
n_layers,
|
11 |
-
kernel_size,
|
12 |
-
dropout,
|
13 |
-
device,
|
14 |
-
max_length = 512):
|
15 |
-
super().__init__()
|
16 |
-
|
17 |
-
assert kernel_size % 2 == 1, "Kernel size must be odd!"
|
18 |
-
|
19 |
-
self.device = device
|
20 |
-
|
21 |
-
self.scale = torch.sqrt(torch.FloatTensor([0.5])).to(device)
|
22 |
-
|
23 |
-
# self.tok_embedding = nn.Embedding(input_dim, emb_dim)
|
24 |
-
self.pos_embedding = nn.Embedding(max_length, emb_dim)
|
25 |
-
|
26 |
-
self.emb2hid = nn.Linear(emb_dim, hid_dim)
|
27 |
-
self.hid2emb = nn.Linear(hid_dim, emb_dim)
|
28 |
-
|
29 |
-
self.convs = nn.ModuleList([nn.Conv1d(in_channels = hid_dim,
|
30 |
-
out_channels = 2 * hid_dim,
|
31 |
-
kernel_size = kernel_size,
|
32 |
-
padding = (kernel_size - 1) // 2)
|
33 |
-
for _ in range(n_layers)])
|
34 |
-
|
35 |
-
self.dropout = nn.Dropout(dropout)
|
36 |
-
|
37 |
-
def forward(self, src):
|
38 |
-
|
39 |
-
#src = [batch size, src len]
|
40 |
-
|
41 |
-
src = src.transpose(0, 1)
|
42 |
-
|
43 |
-
batch_size = src.shape[0]
|
44 |
-
src_len = src.shape[1]
|
45 |
-
device = src.device
|
46 |
-
|
47 |
-
#create position tensor
|
48 |
-
pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(device)
|
49 |
-
|
50 |
-
#pos = [0, 1, 2, 3, ..., src len - 1]
|
51 |
-
|
52 |
-
#pos = [batch size, src len]
|
53 |
-
|
54 |
-
#embed tokens and positions
|
55 |
-
|
56 |
-
# tok_embedded = self.tok_embedding(src)
|
57 |
-
tok_embedded = src
|
58 |
-
|
59 |
-
pos_embedded = self.pos_embedding(pos)
|
60 |
-
|
61 |
-
#tok_embedded = pos_embedded = [batch size, src len, emb dim]
|
62 |
-
|
63 |
-
#combine embeddings by elementwise summing
|
64 |
-
embedded = self.dropout(tok_embedded + pos_embedded)
|
65 |
-
|
66 |
-
#embedded = [batch size, src len, emb dim]
|
67 |
-
|
68 |
-
#pass embedded through linear layer to convert from emb dim to hid dim
|
69 |
-
conv_input = self.emb2hid(embedded)
|
70 |
-
|
71 |
-
#conv_input = [batch size, src len, hid dim]
|
72 |
-
|
73 |
-
#permute for convolutional layer
|
74 |
-
conv_input = conv_input.permute(0, 2, 1)
|
75 |
-
|
76 |
-
#conv_input = [batch size, hid dim, src len]
|
77 |
-
|
78 |
-
#begin convolutional blocks...
|
79 |
-
|
80 |
-
for i, conv in enumerate(self.convs):
|
81 |
-
|
82 |
-
#pass through convolutional layer
|
83 |
-
conved = conv(self.dropout(conv_input))
|
84 |
-
|
85 |
-
#conved = [batch size, 2 * hid dim, src len]
|
86 |
-
|
87 |
-
#pass through GLU activation function
|
88 |
-
conved = F.glu(conved, dim = 1)
|
89 |
-
|
90 |
-
#conved = [batch size, hid dim, src len]
|
91 |
-
|
92 |
-
#apply residual connection
|
93 |
-
conved = (conved + conv_input) * self.scale
|
94 |
-
|
95 |
-
#conved = [batch size, hid dim, src len]
|
96 |
-
|
97 |
-
#set conv_input to conved for next loop iteration
|
98 |
-
conv_input = conved
|
99 |
-
|
100 |
-
#...end convolutional blocks
|
101 |
-
|
102 |
-
#permute and convert back to emb dim
|
103 |
-
conved = self.hid2emb(conved.permute(0, 2, 1))
|
104 |
-
|
105 |
-
#conved = [batch size, src len, emb dim]
|
106 |
-
|
107 |
-
#elementwise sum output (conved) and input (embedded) to be used for attention
|
108 |
-
combined = (conved + embedded) * self.scale
|
109 |
-
|
110 |
-
#combined = [batch size, src len, emb dim]
|
111 |
-
|
112 |
-
return conved, combined
|
113 |
-
|
114 |
-
class Decoder(nn.Module):
|
115 |
-
def __init__(self,
|
116 |
-
output_dim,
|
117 |
-
emb_dim,
|
118 |
-
hid_dim,
|
119 |
-
n_layers,
|
120 |
-
kernel_size,
|
121 |
-
dropout,
|
122 |
-
trg_pad_idx,
|
123 |
-
device,
|
124 |
-
max_length = 512):
|
125 |
-
super().__init__()
|
126 |
-
|
127 |
-
self.kernel_size = kernel_size
|
128 |
-
self.trg_pad_idx = trg_pad_idx
|
129 |
-
self.device = device
|
130 |
-
|
131 |
-
self.scale = torch.sqrt(torch.FloatTensor([0.5])).to(device)
|
132 |
-
|
133 |
-
self.tok_embedding = nn.Embedding(output_dim, emb_dim)
|
134 |
-
self.pos_embedding = nn.Embedding(max_length, emb_dim)
|
135 |
-
|
136 |
-
self.emb2hid = nn.Linear(emb_dim, hid_dim)
|
137 |
-
self.hid2emb = nn.Linear(hid_dim, emb_dim)
|
138 |
-
|
139 |
-
self.attn_hid2emb = nn.Linear(hid_dim, emb_dim)
|
140 |
-
self.attn_emb2hid = nn.Linear(emb_dim, hid_dim)
|
141 |
-
|
142 |
-
self.fc_out = nn.Linear(emb_dim, output_dim)
|
143 |
-
|
144 |
-
self.convs = nn.ModuleList([nn.Conv1d(in_channels = hid_dim,
|
145 |
-
out_channels = 2 * hid_dim,
|
146 |
-
kernel_size = kernel_size)
|
147 |
-
for _ in range(n_layers)])
|
148 |
-
|
149 |
-
self.dropout = nn.Dropout(dropout)
|
150 |
-
|
151 |
-
def calculate_attention(self, embedded, conved, encoder_conved, encoder_combined):
|
152 |
-
|
153 |
-
#embedded = [batch size, trg len, emb dim]
|
154 |
-
#conved = [batch size, hid dim, trg len]
|
155 |
-
#encoder_conved = encoder_combined = [batch size, src len, emb dim]
|
156 |
-
|
157 |
-
#permute and convert back to emb dim
|
158 |
-
conved_emb = self.attn_hid2emb(conved.permute(0, 2, 1))
|
159 |
-
|
160 |
-
#conved_emb = [batch size, trg len, emb dim]
|
161 |
-
|
162 |
-
combined = (conved_emb + embedded) * self.scale
|
163 |
-
|
164 |
-
#combined = [batch size, trg len, emb dim]
|
165 |
-
|
166 |
-
energy = torch.matmul(combined, encoder_conved.permute(0, 2, 1))
|
167 |
-
|
168 |
-
#energy = [batch size, trg len, src len]
|
169 |
-
|
170 |
-
attention = F.softmax(energy, dim=2)
|
171 |
-
|
172 |
-
#attention = [batch size, trg len, src len]
|
173 |
-
|
174 |
-
attended_encoding = torch.matmul(attention, encoder_combined)
|
175 |
-
|
176 |
-
#attended_encoding = [batch size, trg len, emd dim]
|
177 |
-
|
178 |
-
#convert from emb dim -> hid dim
|
179 |
-
attended_encoding = self.attn_emb2hid(attended_encoding)
|
180 |
-
|
181 |
-
#attended_encoding = [batch size, trg len, hid dim]
|
182 |
-
|
183 |
-
#apply residual connection
|
184 |
-
attended_combined = (conved + attended_encoding.permute(0, 2, 1)) * self.scale
|
185 |
-
|
186 |
-
#attended_combined = [batch size, hid dim, trg len]
|
187 |
-
|
188 |
-
return attention, attended_combined
|
189 |
-
|
190 |
-
def forward(self, trg, encoder_conved, encoder_combined):
|
191 |
-
|
192 |
-
#trg = [batch size, trg len]
|
193 |
-
#encoder_conved = encoder_combined = [batch size, src len, emb dim]
|
194 |
-
trg = trg.transpose(0, 1)
|
195 |
-
|
196 |
-
batch_size = trg.shape[0]
|
197 |
-
trg_len = trg.shape[1]
|
198 |
-
device = trg.device
|
199 |
-
|
200 |
-
#create position tensor
|
201 |
-
pos = torch.arange(0, trg_len).unsqueeze(0).repeat(batch_size, 1).to(device)
|
202 |
-
|
203 |
-
#pos = [batch size, trg len]
|
204 |
-
|
205 |
-
#embed tokens and positions
|
206 |
-
tok_embedded = self.tok_embedding(trg)
|
207 |
-
pos_embedded = self.pos_embedding(pos)
|
208 |
-
|
209 |
-
#tok_embedded = [batch size, trg len, emb dim]
|
210 |
-
#pos_embedded = [batch size, trg len, emb dim]
|
211 |
-
|
212 |
-
#combine embeddings by elementwise summing
|
213 |
-
embedded = self.dropout(tok_embedded + pos_embedded)
|
214 |
-
|
215 |
-
#embedded = [batch size, trg len, emb dim]
|
216 |
-
|
217 |
-
#pass embedded through linear layer to go through emb dim -> hid dim
|
218 |
-
conv_input = self.emb2hid(embedded)
|
219 |
-
|
220 |
-
#conv_input = [batch size, trg len, hid dim]
|
221 |
-
|
222 |
-
#permute for convolutional layer
|
223 |
-
conv_input = conv_input.permute(0, 2, 1)
|
224 |
-
|
225 |
-
#conv_input = [batch size, hid dim, trg len]
|
226 |
-
|
227 |
-
batch_size = conv_input.shape[0]
|
228 |
-
hid_dim = conv_input.shape[1]
|
229 |
-
|
230 |
-
for i, conv in enumerate(self.convs):
|
231 |
-
|
232 |
-
#apply dropout
|
233 |
-
conv_input = self.dropout(conv_input)
|
234 |
-
|
235 |
-
#need to pad so decoder can't "cheat"
|
236 |
-
padding = torch.zeros(batch_size,
|
237 |
-
hid_dim,
|
238 |
-
self.kernel_size - 1).fill_(self.trg_pad_idx).to(device)
|
239 |
-
|
240 |
-
padded_conv_input = torch.cat((padding, conv_input), dim = 2)
|
241 |
-
|
242 |
-
#padded_conv_input = [batch size, hid dim, trg len + kernel size - 1]
|
243 |
-
|
244 |
-
#pass through convolutional layer
|
245 |
-
conved = conv(padded_conv_input)
|
246 |
-
|
247 |
-
#conved = [batch size, 2 * hid dim, trg len]
|
248 |
-
|
249 |
-
#pass through GLU activation function
|
250 |
-
conved = F.glu(conved, dim = 1)
|
251 |
-
|
252 |
-
#conved = [batch size, hid dim, trg len]
|
253 |
-
|
254 |
-
#calculate attention
|
255 |
-
attention, conved = self.calculate_attention(embedded,
|
256 |
-
conved,
|
257 |
-
encoder_conved,
|
258 |
-
encoder_combined)
|
259 |
-
|
260 |
-
#attention = [batch size, trg len, src len]
|
261 |
-
|
262 |
-
#apply residual connection
|
263 |
-
conved = (conved + conv_input) * self.scale
|
264 |
-
|
265 |
-
#conved = [batch size, hid dim, trg len]
|
266 |
-
|
267 |
-
#set conv_input to conved for next loop iteration
|
268 |
-
conv_input = conved
|
269 |
-
|
270 |
-
conved = self.hid2emb(conved.permute(0, 2, 1))
|
271 |
-
|
272 |
-
#conved = [batch size, trg len, emb dim]
|
273 |
-
|
274 |
-
output = self.fc_out(self.dropout(conved))
|
275 |
-
|
276 |
-
#output = [batch size, trg len, output dim]
|
277 |
-
|
278 |
-
return output, attention
|
279 |
-
|
280 |
-
class ConvSeq2Seq(nn.Module):
|
281 |
-
def __init__(self, vocab_size, emb_dim, hid_dim, enc_layers, dec_layers, enc_kernel_size, dec_kernel_size, enc_max_length, dec_max_length, dropout, pad_idx, device):
|
282 |
-
super().__init__()
|
283 |
-
|
284 |
-
enc = Encoder(emb_dim, hid_dim, enc_layers, enc_kernel_size, dropout, device, enc_max_length)
|
285 |
-
dec = Decoder(vocab_size, emb_dim, hid_dim, dec_layers, dec_kernel_size, dropout, pad_idx, device, dec_max_length)
|
286 |
-
|
287 |
-
self.encoder = enc
|
288 |
-
self.decoder = dec
|
289 |
-
|
290 |
-
def forward_encoder(self, src):
|
291 |
-
encoder_conved, encoder_combined = self.encoder(src)
|
292 |
-
|
293 |
-
return encoder_conved, encoder_combined
|
294 |
-
|
295 |
-
def forward_decoder(self, trg, memory):
|
296 |
-
encoder_conved, encoder_combined = memory
|
297 |
-
output, attention = self.decoder(trg, encoder_conved, encoder_combined)
|
298 |
-
|
299 |
-
return output, (encoder_conved, encoder_combined)
|
300 |
-
|
301 |
-
def forward(self, src, trg):
|
302 |
-
|
303 |
-
#src = [batch size, src len]
|
304 |
-
#trg = [batch size, trg len - 1] (<eos> token sliced off the end)
|
305 |
-
|
306 |
-
#calculate z^u (encoder_conved) and (z^u + e) (encoder_combined)
|
307 |
-
#encoder_conved is output from final encoder conv. block
|
308 |
-
#encoder_combined is encoder_conved plus (elementwise) src embedding plus
|
309 |
-
# positional embeddings
|
310 |
-
encoder_conved, encoder_combined = self.encoder(src)
|
311 |
-
|
312 |
-
#encoder_conved = [batch size, src len, emb dim]
|
313 |
-
#encoder_combined = [batch size, src len, emb dim]
|
314 |
-
|
315 |
-
#calculate predictions of next words
|
316 |
-
#output is a batch of predictions for each word in the trg sentence
|
317 |
-
#attention a batch of attention scores across the src sentence for
|
318 |
-
# each word in the trg sentence
|
319 |
-
output, attention = self.decoder(trg, encoder_conved, encoder_combined)
|
320 |
-
|
321 |
-
#output = [batch size, trg len - 1, output dim]
|
322 |
-
#attention = [batch size, trg len - 1, src len]
|
323 |
-
|
324 |
-
return output#, attention
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vietocr/model/seqmodel/seq2seq.py
DELETED
@@ -1,175 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.optim as optim
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
class Encoder(nn.Module):
|
7 |
-
def __init__(self, emb_dim, enc_hid_dim, dec_hid_dim, dropout):
|
8 |
-
super().__init__()
|
9 |
-
|
10 |
-
self.rnn = nn.GRU(emb_dim, enc_hid_dim, bidirectional = True)
|
11 |
-
self.fc = nn.Linear(enc_hid_dim * 2, dec_hid_dim)
|
12 |
-
self.dropout = nn.Dropout(dropout)
|
13 |
-
|
14 |
-
def forward(self, src):
|
15 |
-
"""
|
16 |
-
src: src_len x batch_size x img_channel
|
17 |
-
outputs: src_len x batch_size x hid_dim
|
18 |
-
hidden: batch_size x hid_dim
|
19 |
-
"""
|
20 |
-
|
21 |
-
embedded = self.dropout(src)
|
22 |
-
|
23 |
-
outputs, hidden = self.rnn(embedded)
|
24 |
-
|
25 |
-
hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)))
|
26 |
-
|
27 |
-
return outputs, hidden
|
28 |
-
|
29 |
-
class Attention(nn.Module):
|
30 |
-
def __init__(self, enc_hid_dim, dec_hid_dim):
|
31 |
-
super().__init__()
|
32 |
-
|
33 |
-
self.attn = nn.Linear((enc_hid_dim * 2) + dec_hid_dim, dec_hid_dim)
|
34 |
-
self.v = nn.Linear(dec_hid_dim, 1, bias = False)
|
35 |
-
|
36 |
-
def forward(self, hidden, encoder_outputs):
|
37 |
-
"""
|
38 |
-
hidden: batch_size x hid_dim
|
39 |
-
encoder_outputs: src_len x batch_size x hid_dim,
|
40 |
-
outputs: batch_size x src_len
|
41 |
-
"""
|
42 |
-
|
43 |
-
batch_size = encoder_outputs.shape[1]
|
44 |
-
src_len = encoder_outputs.shape[0]
|
45 |
-
|
46 |
-
hidden = hidden.unsqueeze(1).repeat(1, src_len, 1)
|
47 |
-
|
48 |
-
encoder_outputs = encoder_outputs.permute(1, 0, 2)
|
49 |
-
|
50 |
-
energy = torch.tanh(self.attn(torch.cat((hidden, encoder_outputs), dim = 2)))
|
51 |
-
|
52 |
-
attention = self.v(energy).squeeze(2)
|
53 |
-
|
54 |
-
return F.softmax(attention, dim = 1)
|
55 |
-
|
56 |
-
class Decoder(nn.Module):
|
57 |
-
def __init__(self, output_dim, emb_dim, enc_hid_dim, dec_hid_dim, dropout, attention):
|
58 |
-
super().__init__()
|
59 |
-
|
60 |
-
self.output_dim = output_dim
|
61 |
-
self.attention = attention
|
62 |
-
|
63 |
-
self.embedding = nn.Embedding(output_dim, emb_dim)
|
64 |
-
self.rnn = nn.GRU((enc_hid_dim * 2) + emb_dim, dec_hid_dim)
|
65 |
-
self.fc_out = nn.Linear((enc_hid_dim * 2) + dec_hid_dim + emb_dim, output_dim)
|
66 |
-
self.dropout = nn.Dropout(dropout)
|
67 |
-
|
68 |
-
def forward(self, input, hidden, encoder_outputs):
|
69 |
-
"""
|
70 |
-
inputs: batch_size
|
71 |
-
hidden: batch_size x hid_dim
|
72 |
-
encoder_outputs: src_len x batch_size x hid_dim
|
73 |
-
"""
|
74 |
-
|
75 |
-
input = input.unsqueeze(0)
|
76 |
-
|
77 |
-
embedded = self.dropout(self.embedding(input))
|
78 |
-
|
79 |
-
a = self.attention(hidden, encoder_outputs)
|
80 |
-
|
81 |
-
a = a.unsqueeze(1)
|
82 |
-
|
83 |
-
encoder_outputs = encoder_outputs.permute(1, 0, 2)
|
84 |
-
|
85 |
-
weighted = torch.bmm(a, encoder_outputs)
|
86 |
-
|
87 |
-
weighted = weighted.permute(1, 0, 2)
|
88 |
-
|
89 |
-
rnn_input = torch.cat((embedded, weighted), dim = 2)
|
90 |
-
|
91 |
-
output, hidden = self.rnn(rnn_input, hidden.unsqueeze(0))
|
92 |
-
|
93 |
-
assert (output == hidden).all()
|
94 |
-
|
95 |
-
embedded = embedded.squeeze(0)
|
96 |
-
output = output.squeeze(0)
|
97 |
-
weighted = weighted.squeeze(0)
|
98 |
-
|
99 |
-
prediction = self.fc_out(torch.cat((output, weighted, embedded), dim = 1))
|
100 |
-
|
101 |
-
return prediction, hidden.squeeze(0), a.squeeze(1)
|
102 |
-
|
103 |
-
class Seq2Seq(nn.Module):
|
104 |
-
def __init__(self, vocab_size, encoder_hidden, decoder_hidden, img_channel, decoder_embedded, dropout=0.1):
|
105 |
-
super().__init__()
|
106 |
-
|
107 |
-
attn = Attention(encoder_hidden, decoder_hidden)
|
108 |
-
|
109 |
-
self.encoder = Encoder(img_channel, encoder_hidden, decoder_hidden, dropout)
|
110 |
-
self.decoder = Decoder(vocab_size, decoder_embedded, encoder_hidden, decoder_hidden, dropout, attn)
|
111 |
-
|
112 |
-
def forward_encoder(self, src):
|
113 |
-
"""
|
114 |
-
src: timestep x batch_size x channel
|
115 |
-
hidden: batch_size x hid_dim
|
116 |
-
encoder_outputs: src_len x batch_size x hid_dim
|
117 |
-
"""
|
118 |
-
|
119 |
-
encoder_outputs, hidden = self.encoder(src)
|
120 |
-
|
121 |
-
return (hidden, encoder_outputs)
|
122 |
-
|
123 |
-
def forward_decoder(self, tgt, memory):
|
124 |
-
"""
|
125 |
-
tgt: timestep x batch_size
|
126 |
-
hidden: batch_size x hid_dim
|
127 |
-
encouder: src_len x batch_size x hid_dim
|
128 |
-
output: batch_size x 1 x vocab_size
|
129 |
-
"""
|
130 |
-
|
131 |
-
tgt = tgt[-1]
|
132 |
-
hidden, encoder_outputs = memory
|
133 |
-
output, hidden, _ = self.decoder(tgt, hidden, encoder_outputs)
|
134 |
-
output = output.unsqueeze(1)
|
135 |
-
|
136 |
-
return output, (hidden, encoder_outputs)
|
137 |
-
|
138 |
-
def forward(self, src, trg):
|
139 |
-
"""
|
140 |
-
src: time_step x batch_size
|
141 |
-
trg: time_step x batch_size
|
142 |
-
outputs: batch_size x time_step x vocab_size
|
143 |
-
"""
|
144 |
-
|
145 |
-
batch_size = src.shape[1]
|
146 |
-
trg_len = trg.shape[0]
|
147 |
-
trg_vocab_size = self.decoder.output_dim
|
148 |
-
device = src.device
|
149 |
-
|
150 |
-
outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(device)
|
151 |
-
encoder_outputs, hidden = self.encoder(src)
|
152 |
-
|
153 |
-
for t in range(trg_len):
|
154 |
-
input = trg[t]
|
155 |
-
output, hidden, _ = self.decoder(input, hidden, encoder_outputs)
|
156 |
-
|
157 |
-
outputs[t] = output
|
158 |
-
|
159 |
-
outputs = outputs.transpose(0, 1).contiguous()
|
160 |
-
|
161 |
-
return outputs
|
162 |
-
|
163 |
-
def expand_memory(self, memory, beam_size):
|
164 |
-
hidden, encoder_outputs = memory
|
165 |
-
hidden = hidden.repeat(beam_size, 1)
|
166 |
-
encoder_outputs = encoder_outputs.repeat(1, beam_size, 1)
|
167 |
-
|
168 |
-
return (hidden, encoder_outputs)
|
169 |
-
|
170 |
-
def get_memory(self, memory, i):
|
171 |
-
hidden, encoder_outputs = memory
|
172 |
-
hidden = hidden[[i]]
|
173 |
-
encoder_outputs = encoder_outputs[:, [i],:]
|
174 |
-
|
175 |
-
return (hidden, encoder_outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vietocr/model/seqmodel/transformer.py
DELETED
@@ -1,124 +0,0 @@
|
|
1 |
-
from einops import rearrange
|
2 |
-
from torchvision import models
|
3 |
-
import math
|
4 |
-
import torch
|
5 |
-
from torch import nn
|
6 |
-
|
7 |
-
class LanguageTransformer(nn.Module):
|
8 |
-
def __init__(self, vocab_size,
|
9 |
-
d_model, nhead,
|
10 |
-
num_encoder_layers, num_decoder_layers,
|
11 |
-
dim_feedforward, max_seq_length,
|
12 |
-
pos_dropout, trans_dropout):
|
13 |
-
super().__init__()
|
14 |
-
|
15 |
-
self.d_model = d_model
|
16 |
-
self.embed_tgt = nn.Embedding(vocab_size, d_model)
|
17 |
-
self.pos_enc = PositionalEncoding(d_model, pos_dropout, max_seq_length)
|
18 |
-
# self.learned_pos_enc = LearnedPositionalEncoding(d_model, pos_dropout, max_seq_length)
|
19 |
-
|
20 |
-
self.transformer = nn.Transformer(d_model, nhead,
|
21 |
-
num_encoder_layers, num_decoder_layers,
|
22 |
-
dim_feedforward, trans_dropout)
|
23 |
-
|
24 |
-
self.fc = nn.Linear(d_model, vocab_size)
|
25 |
-
|
26 |
-
def forward(self, src, tgt, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None):
|
27 |
-
"""
|
28 |
-
Shape:
|
29 |
-
- src: (W, N, C)
|
30 |
-
- tgt: (T, N)
|
31 |
-
- src_key_padding_mask: (N, S)
|
32 |
-
- tgt_key_padding_mask: (N, T)
|
33 |
-
- memory_key_padding_mask: (N, S)
|
34 |
-
- output: (N, T, E)
|
35 |
-
|
36 |
-
"""
|
37 |
-
tgt_mask = self.gen_nopeek_mask(tgt.shape[0]).to(src.device)
|
38 |
-
|
39 |
-
src = self.pos_enc(src*math.sqrt(self.d_model))
|
40 |
-
# src = self.learned_pos_enc(src*math.sqrt(self.d_model))
|
41 |
-
|
42 |
-
tgt = self.pos_enc(self.embed_tgt(tgt) * math.sqrt(self.d_model))
|
43 |
-
|
44 |
-
output = self.transformer(src, tgt, tgt_mask=tgt_mask, src_key_padding_mask=src_key_padding_mask,
|
45 |
-
tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask)
|
46 |
-
# output = rearrange(output, 't n e -> n t e')
|
47 |
-
output = output.transpose(0, 1)
|
48 |
-
return self.fc(output)
|
49 |
-
|
50 |
-
def gen_nopeek_mask(self, length):
|
51 |
-
mask = (torch.triu(torch.ones(length, length)) == 1).transpose(0, 1)
|
52 |
-
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
|
53 |
-
|
54 |
-
return mask
|
55 |
-
|
56 |
-
def forward_encoder(self, src):
|
57 |
-
src = self.pos_enc(src*math.sqrt(self.d_model))
|
58 |
-
memory = self.transformer.encoder(src)
|
59 |
-
return memory
|
60 |
-
|
61 |
-
def forward_decoder(self, tgt, memory):
|
62 |
-
tgt_mask = self.gen_nopeek_mask(tgt.shape[0]).to(tgt.device)
|
63 |
-
tgt = self.pos_enc(self.embed_tgt(tgt) * math.sqrt(self.d_model))
|
64 |
-
|
65 |
-
output = self.transformer.decoder(tgt, memory, tgt_mask=tgt_mask)
|
66 |
-
# output = rearrange(output, 't n e -> n t e')
|
67 |
-
output = output.transpose(0, 1)
|
68 |
-
|
69 |
-
return self.fc(output), memory
|
70 |
-
|
71 |
-
def expand_memory(self, memory, beam_size):
|
72 |
-
memory = memory.repeat(1, beam_size, 1)
|
73 |
-
return memory
|
74 |
-
|
75 |
-
def get_memory(self, memory, i):
|
76 |
-
memory = memory[:, [i], :]
|
77 |
-
return memory
|
78 |
-
|
79 |
-
class PositionalEncoding(nn.Module):
|
80 |
-
def __init__(self, d_model, dropout=0.1, max_len=100):
|
81 |
-
super(PositionalEncoding, self).__init__()
|
82 |
-
self.dropout = nn.Dropout(p=dropout)
|
83 |
-
|
84 |
-
pe = torch.zeros(max_len, d_model)
|
85 |
-
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
86 |
-
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
87 |
-
pe[:, 0::2] = torch.sin(position * div_term)
|
88 |
-
pe[:, 1::2] = torch.cos(position * div_term)
|
89 |
-
pe = pe.unsqueeze(0).transpose(0, 1)
|
90 |
-
self.register_buffer('pe', pe)
|
91 |
-
|
92 |
-
def forward(self, x):
|
93 |
-
x = x + self.pe[:x.size(0), :]
|
94 |
-
|
95 |
-
return self.dropout(x)
|
96 |
-
|
97 |
-
class LearnedPositionalEncoding(nn.Module):
|
98 |
-
def __init__(self, d_model, dropout=0.1, max_len=100):
|
99 |
-
super(LearnedPositionalEncoding, self).__init__()
|
100 |
-
self.dropout = nn.Dropout(p=dropout)
|
101 |
-
|
102 |
-
self.pos_embed = nn.Embedding(max_len, d_model)
|
103 |
-
self.layernorm = LayerNorm(d_model)
|
104 |
-
|
105 |
-
def forward(self, x):
|
106 |
-
seq_len = x.size(0)
|
107 |
-
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
|
108 |
-
pos = pos.unsqueeze(-1).expand(x.size()[:2])
|
109 |
-
x = x + self.pos_embed(pos)
|
110 |
-
return self.dropout(self.layernorm(x))
|
111 |
-
|
112 |
-
class LayerNorm(nn.Module):
|
113 |
-
"A layernorm module in the TF style (epsilon inside the square root)."
|
114 |
-
def __init__(self, d_model, variance_epsilon=1e-12):
|
115 |
-
super().__init__()
|
116 |
-
self.gamma = nn.Parameter(torch.ones(d_model))
|
117 |
-
self.beta = nn.Parameter(torch.zeros(d_model))
|
118 |
-
self.variance_epsilon = variance_epsilon
|
119 |
-
|
120 |
-
def forward(self, x):
|
121 |
-
u = x.mean(-1, keepdim=True)
|
122 |
-
s = (x - u).pow(2).mean(-1, keepdim=True)
|
123 |
-
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
124 |
-
return self.gamma * x + self.beta
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vietocr/model/transformerocr.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
from vietocr.model.backbone.cnn import CNN
|
2 |
-
from vietocr.model.seqmodel.transformer import LanguageTransformer
|
3 |
-
from vietocr.model.seqmodel.seq2seq import Seq2Seq
|
4 |
-
from vietocr.model.seqmodel.convseq2seq import ConvSeq2Seq
|
5 |
-
from torch import nn
|
6 |
-
|
7 |
-
class VietOCR(nn.Module):
|
8 |
-
def __init__(self, vocab_size,
|
9 |
-
backbone,
|
10 |
-
cnn_args,
|
11 |
-
transformer_args, seq_modeling='transformer'):
|
12 |
-
|
13 |
-
super(VietOCR, self).__init__()
|
14 |
-
|
15 |
-
self.cnn = CNN(backbone, **cnn_args)
|
16 |
-
self.seq_modeling = seq_modeling
|
17 |
-
|
18 |
-
if seq_modeling == 'transformer':
|
19 |
-
self.transformer = LanguageTransformer(vocab_size, **transformer_args)
|
20 |
-
elif seq_modeling == 'seq2seq':
|
21 |
-
self.transformer = Seq2Seq(vocab_size, **transformer_args)
|
22 |
-
elif seq_modeling == 'convseq2seq':
|
23 |
-
self.transformer = ConvSeq2Seq(vocab_size, **transformer_args)
|
24 |
-
else:
|
25 |
-
raise('Not Support Seq Model')
|
26 |
-
|
27 |
-
def forward(self, img, tgt_input, tgt_key_padding_mask):
|
28 |
-
"""
|
29 |
-
Shape:
|
30 |
-
- img: (N, C, H, W)
|
31 |
-
- tgt_input: (T, N)
|
32 |
-
- tgt_key_padding_mask: (N, T)
|
33 |
-
- output: b t v
|
34 |
-
"""
|
35 |
-
src = self.cnn(img)
|
36 |
-
|
37 |
-
if self.seq_modeling == 'transformer':
|
38 |
-
outputs = self.transformer(src, tgt_input, tgt_key_padding_mask=tgt_key_padding_mask)
|
39 |
-
elif self.seq_modeling == 'seq2seq':
|
40 |
-
outputs = self.transformer(src, tgt_input)
|
41 |
-
elif self.seq_modeling == 'convseq2seq':
|
42 |
-
outputs = self.transformer(src, tgt_input)
|
43 |
-
return outputs
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vietocr/model/vocab.py
DELETED
@@ -1,36 +0,0 @@
|
|
1 |
-
class Vocab():
|
2 |
-
def __init__(self, chars):
|
3 |
-
self.pad = 0
|
4 |
-
self.go = 1
|
5 |
-
self.eos = 2
|
6 |
-
self.mask_token = 3
|
7 |
-
|
8 |
-
self.chars = chars
|
9 |
-
|
10 |
-
self.c2i = {c:i+4 for i, c in enumerate(chars)}
|
11 |
-
|
12 |
-
self.i2c = {i+4:c for i, c in enumerate(chars)}
|
13 |
-
|
14 |
-
self.i2c[0] = '<pad>'
|
15 |
-
self.i2c[1] = '<sos>'
|
16 |
-
self.i2c[2] = '<eos>'
|
17 |
-
self.i2c[3] = '*'
|
18 |
-
|
19 |
-
def encode(self, chars):
|
20 |
-
return [self.go] + [self.c2i[c] for c in chars] + [self.eos]
|
21 |
-
|
22 |
-
def decode(self, ids):
|
23 |
-
first = 1 if self.go in ids else 0
|
24 |
-
last = ids.index(self.eos) if self.eos in ids else None
|
25 |
-
sent = ''.join([self.i2c[i] for i in ids[first:last]])
|
26 |
-
return sent
|
27 |
-
|
28 |
-
def __len__(self):
|
29 |
-
return len(self.c2i) + 4
|
30 |
-
|
31 |
-
def batch_decode(self, arr):
|
32 |
-
texts = [self.decode(ids) for ids in arr]
|
33 |
-
return texts
|
34 |
-
|
35 |
-
def __str__(self):
|
36 |
-
return self.chars
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|