Spaces:
Running
on
Zero
Running
on
Zero
add resizing
Browse files
infer.py
CHANGED
@@ -32,7 +32,18 @@ def infer_pipe(pipe, image_input, task_name, seed, device):
|
|
32 |
with autocast_ctx:
|
33 |
|
34 |
test_image = Image.open(image_input).convert('RGB')
|
35 |
-
test_image = np.array(test_image).astype(np.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
|
37 |
test_image = test_image / 127.5 - 1.0
|
38 |
test_image = test_image.to(device)
|
|
|
32 |
with autocast_ctx:
|
33 |
|
34 |
test_image = Image.open(image_input).convert('RGB')
|
35 |
+
test_image = np.array(test_image).astype(np.float32)
|
36 |
+
if max(test_image.shape[:2]) > 1024:
|
37 |
+
# resize for a maximum size of 1024
|
38 |
+
scale = 1024 / max(test_image.shape[:2])
|
39 |
+
elif min(test_image.shape[:2]) < 384:
|
40 |
+
# resize for a minimum size of 384
|
41 |
+
scale = 384 / min(test_image.shape[:2])
|
42 |
+
else:
|
43 |
+
scale = 1.0
|
44 |
+
new_shape = (int(test_image.shape[1] * scale), int(test_image.shape[0] * scale))
|
45 |
+
test_image = cv2.resize(test_image, new_shape)
|
46 |
+
test_image = test_image.astype(np.float16)
|
47 |
test_image = torch.tensor(test_image).permute(2,0,1).unsqueeze(0)
|
48 |
test_image = test_image / 127.5 - 1.0
|
49 |
test_image = test_image.to(device)
|