File size: 25,112 Bytes
916b126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
from audioop import mul
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import StableDiffusionPipeline, DiffusionPipeline, DDPMScheduler, DDIMScheduler, EulerDiscreteScheduler, \
                      EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ControlNetModel, \
                      DDIMInverseScheduler, UNet2DConditionModel
from diffusers.utils.import_utils import is_xformers_available
from os.path import isfile
from pathlib import Path
import os
import random

import torchvision.transforms as T
# suppress partial model loading warning
logging.set_verbosity_error()

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as T
from torchvision.utils import save_image
from torch.cuda.amp import custom_bwd, custom_fwd
from .perpneg_utils import weighted_perpendicular_aggregator

from .sd_step import *

def rgb2sat(img, T=None):
    max_ = torch.max(img, dim=1, keepdim=True).values + 1e-5
    min_ = torch.min(img, dim=1, keepdim=True).values
    sat = (max_ - min_) / max_
    if T is not None:
        sat = (1 - T) * sat
    return sat

class SpecifyGradient(torch.autograd.Function):
    @staticmethod
    @custom_fwd
    def forward(ctx, input_tensor, gt_grad):
        ctx.save_for_backward(gt_grad)
        # we return a dummy value 1, which will be scaled by amp's scaler so we get the scale in backward.
        return torch.ones([1], device=input_tensor.device, dtype=input_tensor.dtype)

    @staticmethod
    @custom_bwd
    def backward(ctx, grad_scale):
        gt_grad, = ctx.saved_tensors
        gt_grad = gt_grad * grad_scale
        return gt_grad, None

def seed_everything(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    #torch.backends.cudnn.deterministic = True
    #torch.backends.cudnn.benchmark = True

class StableDiffusion(nn.Module):
    def __init__(self, device, fp16, vram_O, t_range=[0.02, 0.98], max_t_range=0.98, num_train_timesteps=None, 
                 ddim_inv=False, use_control_net=False, textual_inversion_path = None, 
                 LoRA_path = None, guidance_opt=None):
        super().__init__()

        self.device = device
        self.precision_t = torch.float16 if fp16 else torch.float32

        print(f'[INFO] loading stable diffusion...')

        model_key = guidance_opt.model_key
        assert model_key is not None

        is_safe_tensor = guidance_opt.is_safe_tensor
        base_model_key = "stabilityai/stable-diffusion-v1-5" if guidance_opt.base_model_key is None else guidance_opt.base_model_key # for finetuned model only

        if is_safe_tensor:
            pipe = StableDiffusionPipeline.from_single_file(model_key, use_safetensors=True, torch_dtype=self.precision_t, load_safety_checker=False)
        else:
            pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=self.precision_t)

        self.ism = not guidance_opt.sds
        self.scheduler = DDIMScheduler.from_pretrained(model_key if not is_safe_tensor else base_model_key, subfolder="scheduler", torch_dtype=self.precision_t)
        self.sche_func = ddim_step

        if use_control_net:
            controlnet_model_key = guidance_opt.controlnet_model_key
            self.controlnet_depth = ControlNetModel.from_pretrained(controlnet_model_key,torch_dtype=self.precision_t).to(device)

        if vram_O:
            pipe.enable_sequential_cpu_offload()
            pipe.enable_vae_slicing()
            pipe.unet.to(memory_format=torch.channels_last)
            pipe.enable_attention_slicing(1)
            pipe.enable_model_cpu_offload()

        pipe.enable_xformers_memory_efficient_attention()

        pipe = pipe.to(self.device)
        if textual_inversion_path is not None:
            pipe.load_textual_inversion(textual_inversion_path)
            print("load textual inversion in:.{}".format(textual_inversion_path))
        
        if LoRA_path is not None:
            from lora_diffusion import tune_lora_scale, patch_pipe
            print("load lora in:.{}".format(LoRA_path))
            patch_pipe(
                pipe,
                LoRA_path,
                patch_text=True,
                patch_ti=True,
                patch_unet=True,
            )
            tune_lora_scale(pipe.unet, 1.00)
            tune_lora_scale(pipe.text_encoder, 1.00)

        self.pipe = pipe
        self.vae = pipe.vae
        self.tokenizer = pipe.tokenizer
        self.text_encoder = pipe.text_encoder
        self.unet = pipe.unet
        
        self.num_train_timesteps = num_train_timesteps if num_train_timesteps is not None else self.scheduler.config.num_train_timesteps        
        self.scheduler.set_timesteps(self.num_train_timesteps, device=device)

        self.timesteps = torch.flip(self.scheduler.timesteps, dims=(0, ))
        self.min_step = int(self.num_train_timesteps * t_range[0])
        self.max_step = int(self.num_train_timesteps * t_range[1])
        self.warmup_step = int(self.num_train_timesteps*(max_t_range-t_range[1]))

        self.noise_temp = None
        self.noise_gen = torch.Generator(self.device)
        self.noise_gen.manual_seed(guidance_opt.noise_seed)

        self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
        self.rgb_latent_factors = torch.tensor([
                    # R       G       B
                    [ 0.298,  0.207,  0.208],
                    [ 0.187,  0.286,  0.173],
                    [-0.158,  0.189,  0.264],
                    [-0.184, -0.271, -0.473]
                ], device=self.device)
        

        print(f'[INFO] loaded stable diffusion!')

    def augmentation(self, *tensors):
        augs = T.Compose([
                        T.RandomHorizontalFlip(p=0.5),
                    ])
        
        channels = [ten.shape[1] for ten in tensors]
        tensors_concat = torch.concat(tensors, dim=1)
        tensors_concat = augs(tensors_concat)

        results = []
        cur_c = 0
        for i in range(len(channels)):
            results.append(tensors_concat[:, cur_c:cur_c + channels[i], ...])
            cur_c += channels[i]
        return (ten for ten in results)

    def add_noise_with_cfg(self, latents, noise, 
                           ind_t, ind_prev_t, 
                           text_embeddings=None, cfg=1.0, 
                           delta_t=1, inv_steps=1,
                           is_noisy_latent=False,
                           eta=0.0):

        text_embeddings = text_embeddings.to(self.precision_t)
        if cfg <= 1.0:
            uncond_text_embedding = text_embeddings.reshape(2, -1, text_embeddings.shape[-2], text_embeddings.shape[-1])[1]

        unet = self.unet

        if is_noisy_latent:
            prev_noisy_lat = latents
        else:
            prev_noisy_lat = self.scheduler.add_noise(latents, noise, self.timesteps[ind_prev_t])

        cur_ind_t = ind_prev_t
        cur_noisy_lat = prev_noisy_lat

        pred_scores = []

        for i in range(inv_steps):
            # pred noise
            cur_noisy_lat_ = self.scheduler.scale_model_input(cur_noisy_lat, self.timesteps[cur_ind_t]).to(self.precision_t)
            
            if cfg > 1.0:
                latent_model_input = torch.cat([cur_noisy_lat_, cur_noisy_lat_])
                timestep_model_input = self.timesteps[cur_ind_t].reshape(1, 1).repeat(latent_model_input.shape[0], 1).reshape(-1)
                unet_output = unet(latent_model_input, timestep_model_input, 
                                encoder_hidden_states=text_embeddings).sample
                
                uncond, cond = torch.chunk(unet_output, chunks=2)
                
                unet_output = cond + cfg * (uncond - cond) # reverse cfg to enhance the distillation
            else:
                timestep_model_input = self.timesteps[cur_ind_t].reshape(1, 1).repeat(cur_noisy_lat_.shape[0], 1).reshape(-1)
                unet_output = unet(cur_noisy_lat_, timestep_model_input, 
                                    encoder_hidden_states=uncond_text_embedding).sample

            pred_scores.append((cur_ind_t, unet_output))

            next_ind_t = min(cur_ind_t + delta_t, ind_t)
            cur_t, next_t = self.timesteps[cur_ind_t], self.timesteps[next_ind_t]
            delta_t_ = next_t-cur_t if isinstance(self.scheduler, DDIMScheduler) else next_ind_t-cur_ind_t

            cur_noisy_lat = self.sche_func(self.scheduler, unet_output, cur_t, cur_noisy_lat, -delta_t_, eta).prev_sample
            cur_ind_t = next_ind_t

            del unet_output
            torch.cuda.empty_cache()

            if cur_ind_t == ind_t:
                break

        return prev_noisy_lat, cur_noisy_lat, pred_scores[::-1]


    @torch.no_grad()
    def get_text_embeds(self, prompt, resolution=(512, 512)):
        inputs = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')
        embeddings = self.text_encoder(inputs.input_ids.to(self.device))[0]
        return embeddings

    def train_step_perpneg(self, text_embeddings, pred_rgb, pred_depth=None, pred_alpha=None,
                           grad_scale=1,use_control_net=False,
                           save_folder:Path=None, iteration=0, warm_up_rate = 0, weights = 0, 
                           resolution=(512, 512), guidance_opt=None,as_latent=False, embedding_inverse = None):


        # flip aug
        pred_rgb, pred_depth, pred_alpha = self.augmentation(pred_rgb, pred_depth, pred_alpha)

        B = pred_rgb.shape[0]
        K = text_embeddings.shape[0] - 1

        if as_latent:      
            latents,_ = self.encode_imgs(pred_depth.repeat(1,3,1,1).to(self.precision_t))
        else:
            latents,_ = self.encode_imgs(pred_rgb.to(self.precision_t))
        # timestep ~ U(0.02, 0.98) to avoid very high/low noise level
        
        weights = weights.reshape(-1)
        noise = torch.randn((latents.shape[0], 4, resolution[0] // 8, resolution[1] // 8, ), dtype=latents.dtype, device=latents.device, generator=self.noise_gen) + 0.1 * torch.randn((1, 4, 1, 1), device=latents.device).repeat(latents.shape[0], 1, 1, 1)

        inverse_text_embeddings = embedding_inverse.unsqueeze(1).repeat(1, B, 1, 1).reshape(-1, embedding_inverse.shape[-2], embedding_inverse.shape[-1])

        text_embeddings = text_embeddings.reshape(-1, text_embeddings.shape[-2], text_embeddings.shape[-1]) # make it k+1, c * t, ...

        if guidance_opt.annealing_intervals:
            current_delta_t =  int(guidance_opt.delta_t + np.ceil((warm_up_rate)*(guidance_opt.delta_t_start - guidance_opt.delta_t)))
        else:
            current_delta_t =  guidance_opt.delta_t

        ind_t = torch.randint(self.min_step, self.max_step + int(self.warmup_step*warm_up_rate), (1, ), dtype=torch.long, generator=self.noise_gen, device=self.device)[0]
        ind_prev_t = max(ind_t - current_delta_t, torch.ones_like(ind_t) * 0)

        t = self.timesteps[ind_t]
        prev_t = self.timesteps[ind_prev_t]

        with torch.no_grad():
            # step unroll via ddim inversion
            if not self.ism:
                prev_latents_noisy = self.scheduler.add_noise(latents, noise, prev_t)
                latents_noisy = self.scheduler.add_noise(latents, noise, t)
                target = noise
            else:
                # Step 1: sample x_s with larger steps
                xs_delta_t = guidance_opt.xs_delta_t if guidance_opt.xs_delta_t is not None else current_delta_t
                xs_inv_steps = guidance_opt.xs_inv_steps if guidance_opt.xs_inv_steps is not None else int(np.ceil(ind_prev_t / xs_delta_t))
                starting_ind = max(ind_prev_t - xs_delta_t * xs_inv_steps, torch.ones_like(ind_t) * 0)

                _, prev_latents_noisy, pred_scores_xs = self.add_noise_with_cfg(latents, noise, ind_prev_t, starting_ind, inverse_text_embeddings, 
                                                                                guidance_opt.denoise_guidance_scale, xs_delta_t, xs_inv_steps, eta=guidance_opt.xs_eta)
                # Step 2: sample x_t
                _, latents_noisy, pred_scores_xt = self.add_noise_with_cfg(prev_latents_noisy, noise, ind_t, ind_prev_t, inverse_text_embeddings, 
                                                                           guidance_opt.denoise_guidance_scale, current_delta_t, 1, is_noisy_latent=True)        

                pred_scores = pred_scores_xt + pred_scores_xs
                target = pred_scores[0][1]


        with torch.no_grad():
            latent_model_input = latents_noisy[None, :, ...].repeat(1 + K, 1, 1, 1, 1).reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, )
            tt = t.reshape(1, 1).repeat(latent_model_input.shape[0], 1).reshape(-1)

            latent_model_input = self.scheduler.scale_model_input(latent_model_input, tt[0])
            if use_control_net:
                pred_depth_input = pred_depth_input[None, :, ...].repeat(1 + K, 1, 3, 1, 1).reshape(-1, 3, 512, 512).half()
                down_block_res_samples, mid_block_res_sample = self.controlnet_depth(
                    latent_model_input,
                    tt,
                    encoder_hidden_states=text_embeddings,
                    controlnet_cond=pred_depth_input,
                    return_dict=False,
                )
                unet_output = self.unet(latent_model_input, tt, encoder_hidden_states=text_embeddings,
                                    down_block_additional_residuals=down_block_res_samples,
                                    mid_block_additional_residual=mid_block_res_sample).sample
            else:
                unet_output = self.unet(latent_model_input.to(self.precision_t), tt.to(self.precision_t), encoder_hidden_states=text_embeddings.to(self.precision_t)).sample

            unet_output = unet_output.reshape(1 + K, -1, 4, resolution[0] // 8, resolution[1] // 8, )
            noise_pred_uncond, noise_pred_text = unet_output[:1].reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, ), unet_output[1:].reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, )
            delta_noise_preds = noise_pred_text - noise_pred_uncond.repeat(K, 1, 1, 1)
            delta_DSD = weighted_perpendicular_aggregator(delta_noise_preds,\
                                                            weights,\
                                                            B)     

        pred_noise = noise_pred_uncond + guidance_opt.guidance_scale * delta_DSD
        w = lambda alphas: (((1 - alphas) / alphas) ** 0.5)

        grad = w(self.alphas[t]) * (pred_noise - target)
        
        grad = torch.nan_to_num(grad_scale * grad)
        loss = SpecifyGradient.apply(latents, grad)

        if iteration % guidance_opt.vis_interval == 0:
            noise_pred_post = noise_pred_uncond + guidance_opt.guidance_scale * delta_DSD    
            lat2rgb = lambda x: torch.clip((x.permute(0,2,3,1) @ self.rgb_latent_factors.to(x.dtype)).permute(0,3,1,2), 0., 1.)
            save_path_iter = os.path.join(save_folder,"iter_{}_step_{}.jpg".format(iteration,prev_t.item()))
            with torch.no_grad():
                pred_x0_latent_sp = pred_original(self.scheduler, noise_pred_uncond, prev_t, prev_latents_noisy)    
                pred_x0_latent_pos = pred_original(self.scheduler, noise_pred_post, prev_t, prev_latents_noisy)        
                pred_x0_pos = self.decode_latents(pred_x0_latent_pos.type(self.precision_t))
                pred_x0_sp = self.decode_latents(pred_x0_latent_sp.type(self.precision_t))

                grad_abs = torch.abs(grad.detach())
                norm_grad  = F.interpolate((grad_abs / grad_abs.max()).mean(dim=1,keepdim=True), (resolution[0], resolution[1]), mode='bilinear', align_corners=False).repeat(1,3,1,1)

                latents_rgb = F.interpolate(lat2rgb(latents), (resolution[0], resolution[1]), mode='bilinear', align_corners=False)
                latents_sp_rgb = F.interpolate(lat2rgb(pred_x0_latent_sp), (resolution[0], resolution[1]), mode='bilinear', align_corners=False)

                viz_images = torch.cat([pred_rgb, 
                                        pred_depth.repeat(1, 3, 1, 1), 
                                        pred_alpha.repeat(1, 3, 1, 1), 
                                        rgb2sat(pred_rgb, pred_alpha).repeat(1, 3, 1, 1),
                                        latents_rgb, latents_sp_rgb, 
                                        norm_grad,
                                        pred_x0_sp, pred_x0_pos],dim=0) 
                save_image(viz_images, save_path_iter)


        return loss


    def train_step(self, text_embeddings, pred_rgb, pred_depth=None, pred_alpha=None,
                    grad_scale=1,use_control_net=False,
                    save_folder:Path=None, iteration=0, warm_up_rate = 0,
                    resolution=(512, 512), guidance_opt=None,as_latent=False, embedding_inverse = None):

        pred_rgb, pred_depth, pred_alpha = self.augmentation(pred_rgb, pred_depth, pred_alpha)

        B = pred_rgb.shape[0]
        K = text_embeddings.shape[0] - 1

        if as_latent:      
            latents,_ = self.encode_imgs(pred_depth.repeat(1,3,1,1).to(self.precision_t))
        else:
            latents,_ = self.encode_imgs(pred_rgb.to(self.precision_t))
        # timestep ~ U(0.02, 0.98) to avoid very high/low noise level

        if self.noise_temp is None:
            self.noise_temp = torch.randn((latents.shape[0], 4, resolution[0] // 8, resolution[1] // 8, ), dtype=latents.dtype, device=latents.device, generator=self.noise_gen) + 0.1 * torch.randn((1, 4, 1, 1), device=latents.device).repeat(latents.shape[0], 1, 1, 1)
        
        if guidance_opt.fix_noise:
            noise = self.noise_temp
        else:
            noise = torch.randn((latents.shape[0], 4, resolution[0] // 8, resolution[1] // 8, ), dtype=latents.dtype, device=latents.device, generator=self.noise_gen) + 0.1 * torch.randn((1, 4, 1, 1), device=latents.device).repeat(latents.shape[0], 1, 1, 1)

        text_embeddings = text_embeddings[:, :, ...]
        text_embeddings = text_embeddings.reshape(-1, text_embeddings.shape[-2], text_embeddings.shape[-1]) # make it k+1, c * t, ...

        inverse_text_embeddings = embedding_inverse.unsqueeze(1).repeat(1, B, 1, 1).reshape(-1, embedding_inverse.shape[-2], embedding_inverse.shape[-1])

        if guidance_opt.annealing_intervals:
            current_delta_t =  int(guidance_opt.delta_t + (warm_up_rate)*(guidance_opt.delta_t_start - guidance_opt.delta_t))
        else:
            current_delta_t =  guidance_opt.delta_t

        ind_t = torch.randint(self.min_step, self.max_step + int(self.warmup_step*warm_up_rate), (1, ), dtype=torch.long, generator=self.noise_gen, device=self.device)[0]
        ind_prev_t = max(ind_t - current_delta_t, torch.ones_like(ind_t) * 0)

        t = self.timesteps[ind_t]
        prev_t = self.timesteps[ind_prev_t]

        with torch.no_grad():
            # step unroll via ddim inversion
            if not self.ism:
                prev_latents_noisy = self.scheduler.add_noise(latents, noise, prev_t)
                latents_noisy = self.scheduler.add_noise(latents, noise, t)
                target = noise
            else:
                # Step 1: sample x_s with larger steps
                xs_delta_t = guidance_opt.xs_delta_t if guidance_opt.xs_delta_t is not None else current_delta_t
                xs_inv_steps = guidance_opt.xs_inv_steps if guidance_opt.xs_inv_steps is not None else int(np.ceil(ind_prev_t / xs_delta_t))
                starting_ind = max(ind_prev_t - xs_delta_t * xs_inv_steps, torch.ones_like(ind_t) * 0)

                _, prev_latents_noisy, pred_scores_xs = self.add_noise_with_cfg(latents, noise, ind_prev_t, starting_ind, inverse_text_embeddings, 
                                                                                guidance_opt.denoise_guidance_scale, xs_delta_t, xs_inv_steps, eta=guidance_opt.xs_eta)
                # Step 2: sample x_t
                _, latents_noisy, pred_scores_xt = self.add_noise_with_cfg(prev_latents_noisy, noise, ind_t, ind_prev_t, inverse_text_embeddings, 
                                                                           guidance_opt.denoise_guidance_scale, current_delta_t, 1, is_noisy_latent=True)        

                pred_scores = pred_scores_xt + pred_scores_xs
                target = pred_scores[0][1]


        with torch.no_grad():
            latent_model_input = latents_noisy[None, :, ...].repeat(2, 1, 1, 1, 1).reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, )
            tt = t.reshape(1, 1).repeat(latent_model_input.shape[0], 1).reshape(-1)

            latent_model_input = self.scheduler.scale_model_input(latent_model_input, tt[0])
            if use_control_net:
                pred_depth_input = pred_depth_input[None, :, ...].repeat(1 + K, 1, 3, 1, 1).reshape(-1, 3, 512, 512).half()
                down_block_res_samples, mid_block_res_sample = self.controlnet_depth(
                    latent_model_input,
                    tt,
                    encoder_hidden_states=text_embeddings,
                    controlnet_cond=pred_depth_input,
                    return_dict=False,
                )
                unet_output = self.unet(latent_model_input, tt, encoder_hidden_states=text_embeddings,
                                    down_block_additional_residuals=down_block_res_samples,
                                    mid_block_additional_residual=mid_block_res_sample).sample
            else:
                unet_output = self.unet(latent_model_input.to(self.precision_t), tt.to(self.precision_t), encoder_hidden_states=text_embeddings.to(self.precision_t)).sample

            unet_output = unet_output.reshape(2, -1, 4, resolution[0] // 8, resolution[1] // 8, )
            noise_pred_uncond, noise_pred_text = unet_output[:1].reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, ), unet_output[1:].reshape(-1, 4, resolution[0] // 8, resolution[1] // 8, )
            delta_DSD = noise_pred_text - noise_pred_uncond
        
        pred_noise = noise_pred_uncond + guidance_opt.guidance_scale * delta_DSD

        w = lambda alphas: (((1 - alphas) / alphas) ** 0.5)     

        grad = w(self.alphas[t]) * (pred_noise - target)

        grad = torch.nan_to_num(grad_scale * grad)
        loss = SpecifyGradient.apply(latents, grad)
              
        if iteration % guidance_opt.vis_interval == 0:
            noise_pred_post = noise_pred_uncond + 7.5* delta_DSD    
            lat2rgb = lambda x: torch.clip((x.permute(0,2,3,1) @ self.rgb_latent_factors.to(x.dtype)).permute(0,3,1,2), 0., 1.)
            save_path_iter = os.path.join(save_folder,"iter_{}_step_{}.jpg".format(iteration,prev_t.item()))
            with torch.no_grad():
                pred_x0_latent_sp = pred_original(self.scheduler, noise_pred_uncond, prev_t, prev_latents_noisy)    
                pred_x0_latent_pos = pred_original(self.scheduler, noise_pred_post, prev_t, prev_latents_noisy)        
                pred_x0_pos = self.decode_latents(pred_x0_latent_pos.type(self.precision_t))
                pred_x0_sp = self.decode_latents(pred_x0_latent_sp.type(self.precision_t))
                # pred_x0_uncond = pred_x0_sp[:1, ...]

                grad_abs = torch.abs(grad.detach())
                norm_grad  = F.interpolate((grad_abs / grad_abs.max()).mean(dim=1,keepdim=True), (resolution[0], resolution[1]), mode='bilinear', align_corners=False).repeat(1,3,1,1)

                latents_rgb = F.interpolate(lat2rgb(latents), (resolution[0], resolution[1]), mode='bilinear', align_corners=False)
                latents_sp_rgb = F.interpolate(lat2rgb(pred_x0_latent_sp), (resolution[0], resolution[1]), mode='bilinear', align_corners=False)

                viz_images = torch.cat([pred_rgb, 
                                        pred_depth.repeat(1, 3, 1, 1), 
                                        pred_alpha.repeat(1, 3, 1, 1), 
                                        rgb2sat(pred_rgb, pred_alpha).repeat(1, 3, 1, 1),
                                        latents_rgb, latents_sp_rgb, norm_grad,
                                        pred_x0_sp, pred_x0_pos],dim=0) 
                save_image(viz_images, save_path_iter)

        return loss

    def decode_latents(self, latents):
        target_dtype = latents.dtype
        latents = latents / self.vae.config.scaling_factor

        imgs = self.vae.decode(latents.to(self.vae.dtype)).sample
        imgs = (imgs / 2 + 0.5).clamp(0, 1)

        return imgs.to(target_dtype)

    def encode_imgs(self, imgs):
        target_dtype = imgs.dtype
        # imgs: [B, 3, H, W]
        imgs = 2 * imgs - 1

        posterior = self.vae.encode(imgs.to(self.vae.dtype)).latent_dist
        kl_divergence = posterior.kl()

        latents = posterior.sample() * self.vae.config.scaling_factor

        return latents.to(target_dtype), kl_divergence