haodongli commited on
Commit
8bd5274
·
1 Parent(s): 3df4b98

upload resources

Browse files
.gitattributes CHANGED
@@ -38,3 +38,7 @@ example/Donut.mp4 filter=lfs diff=lfs merge=lfs -text
38
  example/durian.mp4 filter=lfs diff=lfs merge=lfs -text
39
  example/pillow_huskies.mp4 filter=lfs diff=lfs merge=lfs -text
40
  example/wooden_car.mp4 filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
38
  example/durian.mp4 filter=lfs diff=lfs merge=lfs -text
39
  example/pillow_huskies.mp4 filter=lfs diff=lfs merge=lfs -text
40
  example/wooden_car.mp4 filter=lfs diff=lfs merge=lfs -text
41
+ resources/applications.jpg filter=lfs diff=lfs merge=lfs -text
42
+ resources/gif/demo-1.gif filter=lfs diff=lfs merge=lfs -text
43
+ resources/gif/demo-2.gif filter=lfs diff=lfs merge=lfs -text
44
+ resources/teaser.jpg filter=lfs diff=lfs merge=lfs -text
resources/Training_Instructions.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Preparations
2
+
3
+ ## Cloning the Repository
4
+ The repository contains submodules, thus please check it out with
5
+ ```shell
6
+ # SSH
7
+ git clone git@github.com:EnVision-Research/LucidDreamer.git --recursive
8
+ ```
9
+ or
10
+ ```shell
11
+ # HTTPS
12
+ git clone https://github.com/EnVision-Research/LucidDreamer.git --recursive
13
+ ```
14
+ ## Setup
15
+ Our default, provided install method is based on Conda package.
16
+ Firstly, you need to create an virtual environment and install the submodoules we provide. (slightly difference from original [3DGS](https://github.com/graphdeco-inria/gaussian-splatting))
17
+ ```shell
18
+ conda env create --file environment.yml
19
+ conda activate LucidDreamer
20
+ pip install submodules/diff-gaussian-rasterization/
21
+ pip install submodules/simple-knn/
22
+ ```
23
+ Then, you need to install [Point-E](https://github.com/openai/point-e) follow the instruction under this repo:
24
+ ```shell
25
+ https://github.com/openai/point-e
26
+ ```
27
+
28
+ # Running
29
+ We will provide a detailed guideline of our implementation about the description of each hyperparameter and how to tune them later. Now, we release 9 config files for you to evaluate the effectiveness of our framework (all configs can be trained in a single RTX3090).
30
+
31
+ Firstly, you may need to change ```model_key:``` in the ```configs\<config_file>.yaml``` to link the local Pretrained Diffusion Models ( [Stable Diffusion 2.1-base](https://github.com/Stability-AI/StableDiffusion) in default)
32
+
33
+
34
+ Then, you can simply use:
35
+
36
+ ```shell
37
+ python train.py --opt <path to config file>
38
+ ```
39
+ or you can see an exmaple and use the script we provide after you identify the visualable GPU:
40
+ ```shell
41
+ bash train.sh
42
+ ```
43
+ We provide config files in ```configs\``` that serve for different tasks:
44
+
45
+ Text-to-3D generation:
46
+ ```shell
47
+ axe.yaml
48
+ bagel.yaml
49
+ cat_armor.yaml
50
+ crown.yaml
51
+ football_helmet.yaml
52
+ hamburger.yaml
53
+ white_hair_ironman.yaml
54
+ zombie_joker.yaml
55
+ ```
56
+
57
+ Personalized Text-to-3D:
58
+ ```shell
59
+ ts_lora.yaml
60
+ ```
61
+ You can also use your own LoRA thourgh modify the: ```LoRA_path:```
resources/applications.jpg ADDED

Git LFS Details

  • SHA256: 2844efd9791acbe7203bef5f836c90ca5d215a4e85c2593c1fc581c3f8d2dcb0
  • Pointer size: 132 Bytes
  • Size of remote file: 1.7 MB
resources/framework.jpg ADDED
resources/gif/demo-1.gif ADDED

Git LFS Details

  • SHA256: 5b06e1c5340a4ce86d8a6789f1e7a91d0c980d33e54dd62a623f04c3e0514e98
  • Pointer size: 132 Bytes
  • Size of remote file: 9.81 MB
resources/gif/demo-2.gif ADDED

Git LFS Details

  • SHA256: 261825ed6b312f04ad2f385656e5d23ded34666fdf93e538e823a073d01252b5
  • Pointer size: 132 Bytes
  • Size of remote file: 9.38 MB
resources/teaser.jpg ADDED

Git LFS Details

  • SHA256: 90b49a68916d0a183d4acf6b4b56cae5c7b7cde94f9ba68b2b93a118452cc72f
  • Pointer size: 132 Bytes
  • Size of remote file: 3.24 MB