haoheliu's picture
Update app.py
2491afb
raw
history blame
13.7 kB
from sys import maxsize
from huggingface_hub import hf_hub_download
import torch
import os
import gradio as gr
from audioldm2 import text_to_audio, build_model
from share_btn import community_icon_html, loading_icon_html, share_js
os.environ["TOKENIZERS_PARALLELISM"] = "true"
# default_checkpoint="audioldm2-full"
default_checkpoint="audioldm_48k"
audioldm = None
current_model_name = None
def text2audio(
text,
duration,
guidance_scale,
random_seed,
n_candidates,
model_name=default_checkpoint,
):
global audioldm, current_model_name
torch.set_float32_matmul_precision("high")
if audioldm is None or model_name != current_model_name:
audioldm = build_model(model_name=model_name)
current_model_name = model_name
# audioldm = torch.compile(audioldm)
# print(text, length, guidance_scale)
if("48k" in model_name):
latent_t_per_second=12.8
sample_rate=48000
else:
latent_t_per_second=25.6
sample_rate=16000
waveform = text_to_audio(
latent_diffusion=audioldm,
text=text,
seed=random_seed,
duration=duration,
guidance_scale=guidance_scale,
n_candidate_gen_per_text=int(n_candidates),
latent_t_per_second=latent_t_per_second,
) # [bs, 1, samples]
waveform = [
gr.make_waveform((sample_rate, wave[0]), bg_image="bg.png") for wave in waveform
]
# waveform = [(16000, np.random.randn(16000)), (16000, np.random.randn(16000))]
if len(waveform) == 1:
waveform = waveform[0]
return waveform
css = """
a {
color: inherit;
text-decoration: underline;
}
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: #000000;
background: #000000;
}
input[type='range'] {
accent-color: #000000;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.acknowledgments h4{
margin: 1.25em 0 .25em 0;
font-weight: bold;
font-size: 115%;
}
#container-advanced-btns{
display: flex;
flex-wrap: wrap;
justify-content: space-between;
align-items: center;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
margin-top: 10px;
margin-left: auto;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
.gr-form{
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
}
#prompt-container{
gap: 0;
}
#generated_id{
min-height: 700px
}
#setting_id{
margin-bottom: 12px;
text-align: center;
font-weight: 900;
}
"""
iface = gr.Blocks(css=css)
with iface:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
48kHz AudioLDM: Generating High-Fidelity Audio and Music with Text
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
<a href="https://arxiv.org/abs/2308.05734">[Paper]</a> <a href="https://audioldm.github.io/audioldm2">[Project page]</a> <a href="https://discord.com/invite/b64SEmdf">[Join Discord]</a>
</p>
</div>
"""
)
gr.HTML(
"""
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/haoheliu/AudioLDM_48K_Text-to-HiFiAudio_Generation?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
<p/>
"""
)
with gr.Group():
with gr.Box():
############# Input
textbox = gr.Textbox(
value="A forest of wind chimes singing a soothing melody in the breeze.",
max_lines=1,
label="Input your text here. If the output is not good enough, switching to a different seed will help.",
elem_id="prompt-in",
)
with gr.Accordion("Click to modify detailed configurations", open=False):
seed = gr.Number(
value=45,
label="Change this value (any integer number) will lead to a different generation result.",
)
duration = gr.Slider(
5, 15, value=10, step=2.5, label="Duration (seconds)"
)
guidance_scale = gr.Slider(
0,
6,
value=3.5,
step=0.5,
label="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)",
)
n_candidates = gr.Slider(
1,
3,
value=3,
step=1,
label="Automatic quality control. This number control the number of candidates (e.g., generate three audios and choose the best to show you). A Larger value usually lead to better quality with heavier computation",
)
model_name = gr.Dropdown(
["audioldm_48k", "audioldm_crossattn_flant5", "audioldm2-full"], value="audioldm_48k",
)
############# Output
# outputs=gr.Audio(label="Output", type="numpy")
outputs = gr.Video(label="Output", elem_id="output-video")
# with gr.Group(elem_id="container-advanced-btns"):
# # advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
# with gr.Group(elem_id="share-btn-container"):
# community_icon = gr.HTML(community_icon_html, visible=False)
# loading_icon = gr.HTML(loading_icon_html, visible=False)
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
# outputs=[gr.Audio(label="Output", type="numpy"), gr.Audio(label="Output", type="numpy")]
btn = gr.Button("Submit").style(full_width=True)
with gr.Group(elem_id="share-btn-container", visible=False):
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
# btn.click(text2audio, inputs=[
# textbox, duration, guidance_scale, seed, n_candidates, model_name], outputs=[outputs])
btn.click(
text2audio,
inputs=[textbox, duration, guidance_scale, seed, n_candidates],
outputs=[outputs],
api_name="text2audio",
)
share_button.click(None, [], [], _js=share_js)
gr.HTML(
"""
<div class="footer" style="text-align: center; max-width: 700px; margin: 0 auto;">
<p>Follow the latest update of AudioLDM 2 on our<a href="https://github.com/haoheliu/AudioLDM2" style="text-decoration: underline;" target="_blank"> Github repo</a>
</p>
<br>
<p>Model by <a href="https://twitter.com/LiuHaohe" style="text-decoration: underline;" target="_blank">Haohe Liu</a></p>
<br>
</div>
"""
)
gr.Examples(
[
# [
# "Birds singing sweetly in a blooming garden.",
# 10,
# 3.5,
# 45,
# 3,
# default_checkpoint,
# ],
[
"A modern synthesizer creating futuristic soundscapes.",
10,
3.5,
45,
3,
default_checkpoint,
],
[
"The vibrant beat of Brazilian samba drums.",
10,
3.5,
45,
3,
default_checkpoint,
],
],
fn=text2audio,
inputs=[textbox, duration, guidance_scale, seed, n_candidates, model_name],
# inputs=[textbox, guidance_scale, seed, n_candidates],
outputs=[outputs],
cache_examples=True,
)
gr.HTML(
"""
<div class="acknowledgements">
<p>Essential Tricks for Enhancing the Quality of Your Generated Audio</p>
<p>1. Try to use more adjectives to describe your sound. For example: "A man is speaking clearly and slowly in a large room" is better than "A man is speaking". This can make sure AudioLDM 2 understands what you want.</p>
<p>2. Try to use different random seeds, which can affect the generation quality significantly sometimes.</p>
<p>3. It's better to use general terms like 'man' or 'woman' instead of specific names for individuals or abstract objects that humans may not be familiar with, such as 'mummy'.</p>
</div>
"""
)
with gr.Accordion("Additional information", open=False):
gr.HTML(
"""
<div class="acknowledgments">
<p> We build the model with data from <a href="http://research.google.com/audioset/">AudioSet</a>, <a href="https://freesound.org/">Freesound</a> and <a href="https://sound-effects.bbcrewind.co.uk/">BBC Sound Effect library</a>. We share this demo based on the <a href="https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/375954/Research.pdf">UK copyright exception</a> of data for academic research. </p>
</div>
"""
)
# <p>This demo is strictly for research demo purpose only. For commercial use please <a href="haoheliu@gmail.com">contact us</a>.</p>
iface.queue(max_size=20)
iface.launch(debug=True)
# iface.launch(debug=True, share=True)