File size: 4,818 Bytes
cc4db04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
import numpy as np
import tensorflow as tf
import logging
from PIL import Image
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input as resnet_preprocess
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input as vgg_preprocess
import scipy.fftpack
import time
import clip
import torch
# Set up logging
logging.basicConfig(level=logging.INFO)
# Load models
resnet_model = ResNet50(weights='imagenet', include_top=False, pooling='avg')
vgg_model = VGG16(weights='imagenet', include_top=False, pooling='avg')
clip_model, preprocess_clip = clip.load("ViT-B/32", device="cpu")
# Preprocess function
def preprocess_img(img_path, target_size=(224, 224), preprocess_func=resnet_preprocess):
start_time = time.time()
img = keras_image.load_img(img_path, target_size=target_size)
img_array = keras_image.img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_func(img_array)
logging.info(f"Image preprocessed in {time.time() - start_time:.4f} seconds")
return img_array
# Feature extraction function
def extract_features(img_path, model, preprocess_func):
img_array = preprocess_img(img_path, preprocess_func=preprocess_func)
start_time = time.time()
features = model.predict(img_array)
logging.info(f"Features extracted in {time.time() - start_time:.4f} seconds")
return features.flatten()
# Calculate cosine similarity
def cosine_similarity(vec1, vec2):
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
# pHash related functions
def phashstr(image, hash_size=8, highfreq_factor=4):
img_size = hash_size * highfreq_factor
image = image.convert('L').resize((img_size, img_size), Image.Resampling.LANCZOS)
pixels = np.asarray(image)
dct = scipy.fftpack.dct(scipy.fftpack.dct(pixels, axis=0), axis=1)
dctlowfreq = dct[:hash_size, :hash_size]
med = np.median(dctlowfreq)
diff = dctlowfreq > med
return _binary_array_to_hex(diff.flatten())
def _binary_array_to_hex(arr):
h = 0
s = []
for i, v in enumerate(arr):
if v:
h += 2**(i % 8)
if (i % 8) == 7:
s.append(hex(h)[2:].rjust(2, '0'))
h = 0
return ''.join(s)
def hamming_distance(hash1, hash2):
if len(hash1) != len(hash2):
raise ValueError("Hashes must be of the same length")
return sum(c1 != c2 for c1, c2 in zip(hash1, hash2))
def hamming_to_similarity(distance, hash_length):
return (1 - distance / hash_length) * 100
# CLIP related functions
def extract_clip_features(image_path, model, preprocess):
image = preprocess(Image.open(image_path)).unsqueeze(0).to("cpu")
with torch.no_grad():
features = model.encode_image(image)
return features.cpu().numpy().flatten()
# Main function
def compare_images(image1, image2, method):
start_time = time.time()
if method == 'pHash':
img1 = Image.open(image1)
img2 = Image.open(image2)
hash1 = phashstr(img1)
hash2 = phashstr(img2)
distance = hamming_distance(hash1, hash2)
similarity = hamming_to_similarity(distance, len(hash1) * 4)
elif method == 'ResNet50':
features1 = extract_features(image1, resnet_model, resnet_preprocess)
features2 = extract_features(image2, resnet_model, resnet_preprocess)
similarity = cosine_similarity(features1, features2)
elif method == 'VGG16':
features1 = extract_features(image1, vgg_model, vgg_preprocess)
features2 = extract_features(image2, vgg_model, vgg_preprocess)
similarity = cosine_similarity(features1, features2)
elif method == 'CLIP':
features1 = extract_clip_features(image1, clip_model, preprocess_clip)
features2 = extract_clip_features(image2, clip_model, preprocess_clip)
similarity = cosine_similarity(features1, features2)
logging.info(f"Image comparison using {method} completed in {time.time() - start_time:.4f} seconds")
return similarity
# Gradio interface
demo = gr.Interface(
fn=compare_images,
inputs=[
gr.Image(type="filepath", label="Upload First Image"),
gr.Image(type="filepath", label="Upload Second Image"),
gr.Radio(["pHash", "ResNet50", "VGG16", "CLIP"], label="Select Comparison Method")
],
outputs=gr.Textbox(label="Similarity"),
title="Image Similarity Comparison",
description="Upload two images and select the comparison method.",
examples=[
["example1.png", "example2.png", "pHash"],
["example1.png", "example2.png", "ResNet50"],
["example1.png", "example2.png", "VGG16"],
["example1.png", "example2.png", "CLIP"]
]
)
demo.launch()
|