import gradio as gr from PIL import Image import numpy as np import cv2 import os import tensorflow as tf if tf.__version__ >= '2.0': tf = tf.compat.v1 class ImageMattingPipeline: def __init__(self, model_dir: str, input_name: str = 'input_image:0', output_name: str = 'output_png:0'): model_path = os.path.join(model_dir, 'tf_graph.pb') if not os.path.exists(model_path): raise FileNotFoundError("Model file not found at {}".format(model_path)) config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True self.graph = tf.Graph() with self.graph.as_default(): self._session = tf.Session(config=config) with tf.gfile.FastGFile(model_path, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) tf.import_graph_def(graph_def, name='') self.output = self._session.graph.get_tensor_by_name(output_name) self.input_name = input_name def preprocess(self, input_image): img = np.array(input_image) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) img = img.astype(float) return {'img': img} def forward(self, input, output_mask=False, alpha_threshold=128): with self.graph.as_default(), self._session.as_default(): feed_dict = {self.input_name: input['img']} output_img = self._session.run(self.output, feed_dict=feed_dict) result = {'output_img': output_img} if output_mask: alpha_channel = output_img[:, :, 3] mask = np.zeros(alpha_channel.shape, dtype=np.uint8) mask[alpha_channel >= alpha_threshold] = 255 output_img[mask == 0, 3] = 0 result['mask'] = mask return result def apply_filters(mask: np.array, closing_kernel: tuple = (5, 5), opening_kernel: tuple = (5, 5), blur_kernel: tuple = (3, 3), bilateral_params: tuple = (9, 75, 75), min_area: int = 2000) -> np.array: mask = mask.astype(np.uint8) closing_element = np.ones(closing_kernel, np.uint8) opening_element = np.ones(opening_kernel, np.uint8) closed_mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, closing_element) opened_mask = cv2.morphologyEx(closed_mask, cv2.MORPH_OPEN, opening_element) smoothed_mask = cv2.GaussianBlur(opened_mask, blur_kernel, 0) edge_smoothed_mask = cv2.bilateralFilter(smoothed_mask, *bilateral_params) num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(edge_smoothed_mask, connectivity=8) large_component_mask = np.zeros_like(edge_smoothed_mask) for i in range(1, num_labels): if stats[i, cv2.CC_STAT_AREA] >= min_area: large_component_mask[labels == i] = 255 return large_component_mask def matting_interface(input_image, apply_morphology): input_image = np.array(input_image) input_image = input_image[:, :, ::-1] pipeline = ImageMattingPipeline(model_dir='cv_unet_universal-matting') preprocessed = pipeline.preprocess(input_image) result = pipeline.forward(preprocessed, output_mask=True) if apply_morphology: mask = apply_filters(result['mask']) else: mask = result.get('mask', None) output_img_pil = Image.fromarray(result['output_img'].astype(np.uint8)) mask_pil = Image.fromarray(mask) if mask is not None else None return output_img_pil, mask_pil iface = gr.Interface( fn=matting_interface, inputs=[ gr.components.Image(type="pil", image_mode="RGB"), gr.components.Checkbox(label="Apply Morphological Processing for Mask") ], outputs=[ gr.components.Image(type="pil", label="Matting Result"), gr.components.Image(type="pil", label="Mask"), ], title="Image Matting and Mask", description="Upload an image to get the matting result and mask. " "Use the checkbox to enable or disable morphological processing on the mask." ) iface.launch()