File size: 16,079 Bytes
708dec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import datetime
import logging
import sys
import os
import math
import time

import torch
import torch.distributed as dist

from maskrcnn_benchmark.utils.comm import get_world_size, all_gather, is_main_process, broadcast_data, get_rank
from maskrcnn_benchmark.utils.metric_logger import MetricLogger
from maskrcnn_benchmark.utils.ema import ModelEma
from maskrcnn_benchmark.utils.amp import autocast, GradScaler
from maskrcnn_benchmark.data.datasets.evaluation import evaluate
from .inference import inference
import pdb

def reduce_loss_dict(loss_dict):
    """

    Reduce the loss dictionary from all processes so that process with rank

    0 has the averaged results. Returns a dict with the same fields as

    loss_dict, after reduction.

    """
    world_size = get_world_size()
    if world_size < 2:
        return loss_dict
    with torch.no_grad():
        loss_names = []
        all_losses = []
        for k in sorted(loss_dict.keys()):
            loss_names.append(k)
            all_losses.append(loss_dict[k])
        all_losses = torch.stack(all_losses, dim=0)
        dist.reduce(all_losses, dst=0)
        if dist.get_rank() == 0:
            # only main process gets accumulated, so only divide by
            # world_size in this case
            all_losses /= world_size
        reduced_losses = {k: v for k, v in zip(loss_names, all_losses)}
    return reduced_losses


def do_train(

        cfg,

        model,

        data_loader,

        optimizer,

        scheduler,

        checkpointer,

        device,

        checkpoint_period,

        arguments,

        val_data_loader=None,

        meters=None,

        zero_shot=False

):
    logger = logging.getLogger("maskrcnn_benchmark.trainer")
    logger.info("Start training")
    # meters = MetricLogger(delimiter="  ")
    max_iter = len(data_loader)
    start_iter = arguments["iteration"]
    model.train()
    model_ema = None
    if cfg.SOLVER.MODEL_EMA > 0:
        model_ema = ModelEma(model, decay=cfg.SOLVER.MODEL_EMA)
    start_training_time = time.time()
    end = time.time()

    if cfg.SOLVER.USE_AMP:
        scaler = GradScaler()

    global_rank = get_rank()

    if cfg.SOLVER.CHECKPOINT_PER_EPOCH != -1 and cfg.SOLVER.MAX_EPOCH >= 1:
        checkpoint_period = len(data_loader) * cfg.SOLVER.CHECKPOINT_PER_EPOCH // cfg.SOLVER.MAX_EPOCH
    
    if global_rank <= 0 and cfg.SOLVER.MAX_EPOCH >= 1:
        print("Iter per epoch ", len(data_loader) // cfg.SOLVER.MAX_EPOCH )

    if cfg.SOLVER.AUTO_TERMINATE_PATIENCE != -1:
        patience_counter = 0
        previous_best = 0.0

    # Adapt the weight decay
    if cfg.SOLVER.WEIGHT_DECAY_SCHEDULE and hasattr(scheduler, 'milestones'):
        milestone_target = 0
        for i, milstone in enumerate(list(scheduler.milestones)):
            if scheduler.last_epoch >= milstone * cfg.SOLVER.WEIGHT_DECAY_SCHEDULE_RATIO:
                milestone_target = i+1
    for iteration, (images, targets, idxs, positive_map, positive_map_eval, greenlight_map) in enumerate(data_loader, start_iter):
        nnegative = sum(len(target) < 1 for target in targets)
        nsample = len(targets)
        if nsample == nnegative or nnegative > nsample * cfg.SOLVER.MAX_NEG_PER_BATCH:
            logger.info('[WARNING] Sampled {} negative in {} in a batch, greater the allowed ratio {}, skip'.
                        format(nnegative, nsample, cfg.SOLVER.MAX_NEG_PER_BATCH))
            continue

        data_time = time.time() - end
        iteration = iteration + 1
        arguments["iteration"] = iteration

        images = images.to(device)
        captions = None
        try:
            targets = [target.to(device) for target in targets]
            captions = [t.get_field("caption") for t in targets if "caption" in t.fields()]
        except:
            pass
        # Freeze language backbone
        if cfg.MODEL.LANGUAGE_BACKBONE.FREEZE:
            if hasattr(model, "module"):
                model.module.language_backbone.eval()
            else:
                model.language_backbone.eval()

        if cfg.SOLVER.USE_AMP:
            with autocast():
                if len(captions) > 0:
                    loss_dict = model(images, targets, captions, positive_map, greenlight_map = greenlight_map)
                else:
                    loss_dict = model(images, targets)
            losses = sum(loss for loss in loss_dict.values())

            # save checkpoints for further debug if nan happens
            # loss_value = losses.item()
            # if not math.isfinite(loss_value):
            #     logging.error(f'=> loss is {loss_value}, stopping training')
            #     logging.error("Losses are : {}".format(loss_dict))
            #     time_str = time.strftime('%Y-%m-%d-%H-%M')
            #     fname = os.path.join(checkpointer.save_dir, f'{time_str}_states.pth')
            #     logging.info(f'=> save error state to {fname}')
            #     dict_to_save = {
            #         'x': images,
            #         'y': targets,
            #         'loss': losses,
            #         'states': model.module.state_dict() if hasattr(model, 'module') else model.state_dict()
            #     }
            #     if len(captions) > 0:
            #         dict_to_save['captions'] = captions
            #         dict_to_save['positive_map'] = positive_map
            #     torch.save(
            #             dict_to_save,
            #             fname
            #         )


            if torch.isnan(losses) or torch.isinf(losses):
                logging.error("NaN encountered, ignoring")
                losses[losses != losses] = 0
            optimizer.zero_grad()
            scaler.scale(losses).backward()
            scaler.step(optimizer)
            scaler.update()
            scheduler.step()
        else:
            if len(captions) > 0:
                loss_dict = model(images, targets, captions, positive_map)
            else:
                loss_dict = model(images, targets)
            losses = sum(loss for loss in loss_dict.values())

            # loss_value = losses.item()
            # if not math.isfinite(loss_value):
            #     logging.error(f'=> loss is {loss_value}, stopping training')
            #     time_str = time.strftime('%Y-%m-%d-%H-%M')
            #     fname = os.path.join(checkpointer.save_dir, f'{time_str}_states.pth')
            #     logging.info(f'=> save error state to {fname}')
            #     dict_to_save = {
            #         'x': images,
            #         'y': targets,
            #         'loss': losses,
            #         'states': model.module.state_dict() if hasattr(model, 'module') else model.state_dict()
            #     }
            #     if len(captions) > 0:
            #         dict_to_save['captions'] = captions
            #         dict_to_save['positive_map'] = positive_map
            #     torch.save(
            #         dict_to_save,
            #         fname
            #     )
                

            if torch.isnan(losses) or torch.isinf(losses):
                losses[losses != losses] = 0
            optimizer.zero_grad()
            losses.backward()
            optimizer.step()
            scheduler.step()

        # Adapt the weight decay: only support multiStepLR
        if cfg.SOLVER.WEIGHT_DECAY_SCHEDULE and hasattr(scheduler, 'milestones'):
            if milestone_target < len(scheduler.milestones):
                next_milestone = list(scheduler.milestones)[milestone_target]
            else:
                next_milestone = float('inf')
            if scheduler.last_epoch >= next_milestone * cfg.SOLVER.WEIGHT_DECAY_SCHEDULE_RATIO:
                gamma = scheduler.gamma
                logger.info("Drop the weight decay by {}!".format(gamma))
                for param in optimizer.param_groups:
                    if 'weight_decay' in param:
                        param['weight_decay'] *= gamma
                # move the target forward
                milestone_target += 1

        # reduce losses over all GPUs for logging purposes
        loss_dict_reduced = reduce_loss_dict(loss_dict)
        losses_reduced = sum(loss for loss in loss_dict_reduced.values())
        meters.update(loss=losses_reduced, **loss_dict_reduced)
        if model_ema is not None:
            model_ema.update(model)
            arguments["model_ema"] = model_ema.state_dict()

        batch_time = time.time() - end
        end = time.time()
        meters.update(time=batch_time, data=data_time)
        eta_seconds = meters.time.global_avg * (max_iter - iteration)
        eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))

        if iteration % 20 == 0 or iteration == max_iter:
        # if iteration % 1 == 0 or iteration == max_iter:
            #logger.info(
            if global_rank <= 0:
                print(
                    meters.delimiter.join(
                        [
                            "eta: {eta}",
                            "iter: {iter}",
                            "{meters}",
                            "lr: {lr:.6f}",
                            "wd: {wd:.6f}",
                            "max mem: {memory:.0f}",
                        ]
                    ).format(
                        eta=eta_string,
                        iter=iteration,
                        meters=str(meters),
                        lr=optimizer.param_groups[0]["lr"],
                        wd=optimizer.param_groups[0]["weight_decay"],
                        memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
                    )
                )
        if val_data_loader and (iteration % checkpoint_period == 0 or iteration == max_iter):
            if is_main_process():
                print("Evaluating")
            eval_result = 0.0
            model.eval()
            if cfg.SOLVER.TEST_WITH_INFERENCE:
                with torch.no_grad():
                    try:
                        _model = model.module
                    except:
                        _model = model
                    _result = inference(
                        model = _model,
                        data_loader = val_data_loader,
                        dataset_name="val",
                        device=device,
                        expected_results=cfg.TEST.EXPECTED_RESULTS,
                        expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
                        output_folder=None,
                        cfg=cfg,
                        verbose=False
                    )
                    if is_main_process():
                        eval_result = _result[0].results['bbox']['AP']
            else:
                results_dict = {}
                cpu_device = torch.device("cpu")
                for i, batch in enumerate(val_data_loader):
                    images, targets, image_ids, positive_map, *_ = batch
                    with torch.no_grad():
                        images = images.to(device)
                        if positive_map is None:
                            output = model(images)
                        else:
                            captions = [t.get_field("caption") for t in targets if "caption" in t.fields()]
                            output = model(images, captions, positive_map)
                        output = [o.to(cpu_device) for o in output]
                    results_dict.update(
                        {img_id: result for img_id, result in zip(image_ids, output)}
                    )
                all_predictions = all_gather(results_dict)
                if is_main_process():
                    predictions = {}
                    for p in all_predictions:
                        predictions.update(p)
                    predictions = [predictions[i] for i in list(sorted(predictions.keys()))]
                    eval_result, _ = evaluate(val_data_loader.dataset, predictions, output_folder=None,
                                            box_only=cfg.DATASETS.CLASS_AGNOSTIC)
                    if cfg.DATASETS.CLASS_AGNOSTIC:
                        eval_result = eval_result.results['box_proposal']['AR@100']
                    else:
                        eval_result = eval_result.results['bbox']['AP']
            model.train()

            if model_ema is not None and cfg.SOLVER.USE_EMA_FOR_MONITOR:
                model_ema.ema.eval()
                results_dict = {}
                cpu_device = torch.device("cpu")
                for i, batch in enumerate(val_data_loader):
                    images, targets, image_ids, positive_map, positive_map_eval = batch
                    with torch.no_grad():
                        images = images.to(device)
                        if positive_map is None:
                            output = model_ema.ema(images)
                        else:
                            captions = [t.get_field("caption") for t in targets if "caption" in t.fields()]
                            output = model_ema.ema(images, captions, positive_map)
                        output = [o.to(cpu_device) for o in output]
                    results_dict.update(
                        {img_id: result for img_id, result in zip(image_ids, output)}
                    )
                all_predictions = all_gather(results_dict)
                if is_main_process():
                    predictions = {}
                    for p in all_predictions:
                        predictions.update(p)
                    predictions = [predictions[i] for i in list(sorted(predictions.keys()))]
                    eval_result, _ = evaluate(val_data_loader.dataset, predictions, output_folder=None,
                                              box_only=cfg.DATASETS.CLASS_AGNOSTIC)
                    if cfg.DATASETS.CLASS_AGNOSTIC:
                        eval_result = eval_result.results['box_proposal']['AR@100']
                    else:
                        eval_result = eval_result.results['bbox']['AP']
                
            arguments.update(eval_result=eval_result)

            if cfg.SOLVER.USE_AUTOSTEP:
                eval_result = all_gather(eval_result)[0] #broadcast_data([eval_result])[0]
                # print("Rank {} eval result gathered".format(cfg.local_rank), eval_result)
                scheduler.step(eval_result)
            
            if cfg.SOLVER.AUTO_TERMINATE_PATIENCE != -1:
                if eval_result < previous_best:
                    patience_counter += 1
                else:
                    patience_counter = 0
                    previous_best = eval_result
                    checkpointer.save("model_best", **arguments)
                print("Previous Best", previous_best, "Patience Counter", patience_counter, "Eval Result", eval_result)
                if patience_counter >= cfg.SOLVER.AUTO_TERMINATE_PATIENCE:
                    if is_main_process():
                        print("\n\n\n\nAuto Termination at {}, current best {}\n\n\n".format(iteration, previous_best))
                    break

        if iteration % checkpoint_period == 0:
            checkpointer.save("model_{:07d}".format(iteration), **arguments)
        if iteration == max_iter:
            checkpointer.save("model_final", **arguments)
            break

    total_training_time = time.time() - start_training_time
    total_time_str = str(datetime.timedelta(seconds=total_training_time))
    logger.info(
        "Total training time: {} ({:.4f} s / it)".format(
            total_time_str, total_training_time / (max_iter)
        )
    )