File size: 6,972 Bytes
708dec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""

Utilities related to distributed mode.



By default, the reduce of metrics and such are done on GPU, since it's more straightforward (we reuse the NCCL backend)

If you want to reduce on CPU instead (required for big datasets like GQA), use the env variable MDETR_CPU_REDUCE=1

"""
import functools
import io
import os

import torch
import torch.distributed as dist

_LOCAL_PROCESS_GROUP = None


@functools.lru_cache()
def _get_global_gloo_group():
    """

    Return a process group based on gloo backend, containing all the ranks

    The result is cached.

    """

    if dist.get_backend() == "nccl":
        return dist.new_group(backend="gloo")

    return dist.group.WORLD


def all_gather(data):
    """

    Run all_gather on arbitrary picklable data (not necessarily tensors)

    Args:

        data: any picklable object

    Returns:

        list[data]: list of data gathered from each rank

    """

    world_size = get_world_size()
    if world_size == 1:
        return [data]

    cpu_group = None
    if os.getenv("MDETR_CPU_REDUCE") == "1":
        cpu_group = _get_global_gloo_group()

    buffer = io.BytesIO()
    torch.save(data, buffer)
    data_view = buffer.getbuffer()
    device = "cuda" if cpu_group is None else "cpu"
    tensor = torch.ByteTensor(data_view).to(device)

    # obtain Tensor size of each rank
    local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long)
    size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)]
    if cpu_group is None:
        dist.all_gather(size_list, local_size)
    else:
        print("gathering on cpu")
        dist.all_gather(size_list, local_size, group=cpu_group)
    size_list = [int(size.item()) for size in size_list]
    max_size = max(size_list)
    assert isinstance(local_size.item(), int)
    local_size = int(local_size.item())

    # receiving Tensor from all ranks
    # we pad the tensor because torch all_gather does not support
    # gathering tensors of different shapes
    tensor_list = []
    for _ in size_list:
        tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device))
    if local_size != max_size:
        padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device)
        tensor = torch.cat((tensor, padding), dim=0)
    if cpu_group is None:
        dist.all_gather(tensor_list, tensor)
    else:
        dist.all_gather(tensor_list, tensor, group=cpu_group)

    data_list = []
    for size, tensor in zip(size_list, tensor_list):
        tensor = torch.split(tensor, [size, max_size - size], dim=0)[0]
        buffer = io.BytesIO(tensor.cpu().numpy())
        obj = torch.load(buffer)
        data_list.append(obj)

    return data_list


def reduce_dict(input_dict, average=True):
    """

    Args:

        input_dict (dict): all the values will be reduced

        average (bool): whether to do average or sum

    Reduce the values in the dictionary from all processes so that all processes

    have the averaged results. Returns a dict with the same fields as

    input_dict, after reduction.

    """
    world_size = get_world_size()
    if world_size < 2:
        return input_dict
    with torch.no_grad():
        names = []
        values = []
        # sort the keys so that they are consistent across processes
        for k in sorted(input_dict.keys()):
            names.append(k)
            values.append(input_dict[k])
        values = torch.stack(values, dim=0)
        dist.all_reduce(values)
        if average:
            values /= world_size
        reduced_dict = {k: v for k, v in zip(names, values)}
    return reduced_dict


def setup_for_distributed(is_master):
    """

    This function disables printing when not in master process

    """
    import builtins as __builtin__

    builtin_print = __builtin__.print

    def print(*args, **kwargs):
        force = kwargs.pop("force", False)
        if is_master or force:
            builtin_print(*args, **kwargs)

    __builtin__.print = print


def is_dist_avail_and_initialized():
    """

    Returns:

        True if distributed training is enabled

    """
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    """

    Returns:

        The number of processes in the process group

    """
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    """

    Returns:

        The rank of the current process within the global process group.

    """
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def get_local_rank() -> int:
    """

    Returns:

        The rank of the current process within the local (per-machine) process group.

    """
    if not dist.is_available():
        return 0
    if not dist.is_initialized():
        return 0
    assert _LOCAL_PROCESS_GROUP is not None
    return dist.get_rank(group=_LOCAL_PROCESS_GROUP)


def get_local_size() -> int:
    """

    Returns:

        The size of the per-machine process group,

        i.e. the number of processes per machine.

    """
    if not dist.is_available():
        return 1
    if not dist.is_initialized():
        return 1
    return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)


def is_main_process():
    """Return true if the current process is the main one"""
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    """Utility function to save only from the main process"""
    if is_main_process():
        torch.save(*args, **kwargs)


def init_distributed_mode(args):
    """Initialize distributed training, if appropriate"""
    if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ["WORLD_SIZE"])
        args.gpu = int(os.environ["LOCAL_RANK"])
    elif "SLURM_PROCID" in os.environ:
        args.rank = int(os.environ["SLURM_PROCID"])
        args.gpu = args.rank % torch.cuda.device_count()
    else:
        print("Not using distributed mode")
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
    args.dist_backend = "nccl"
    print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)

    dist.init_process_group(
        backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
    )
    dist.barrier()
    setup_for_distributed(args.rank == 0)