File size: 11,465 Bytes
708dec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
import numpy as np
import math
import base64
import collections
import pycocotools.mask as mask_utils

from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask


class LabelLoader(object):
    def __init__(self, labelmap, extra_fields=(), filter_duplicate_relations=False, ignore_attr=None, ignore_rel=None,

                 mask_mode="poly"):
        self.labelmap = labelmap
        self.extra_fields = extra_fields
        self.supported_fields = ["class", "conf", "attributes", 'scores_all', 'boxes_all', 'feature', "mask"]
        self.filter_duplicate_relations = filter_duplicate_relations
        self.ignore_attr = set(ignore_attr) if ignore_attr != None else set()
        self.ignore_rel = set(ignore_rel) if ignore_rel != None else set()
        assert mask_mode == "poly" or mask_mode == "mask"
        self.mask_mode = mask_mode

    def __call__(self, annotations, img_size, remove_empty=False, load_fields=None):
        boxes = [obj["rect"] for obj in annotations]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)
        target = BoxList(boxes, img_size, mode="xyxy")

        if load_fields is None:
            load_fields = self.extra_fields

        for field in load_fields:
            assert field in self.supported_fields, "Unsupported field {}".format(field)
            if field == "class":
                classes = self.add_classes(annotations)
                target.add_field("labels", classes)
            elif field == "conf":
                confidences = self.add_confidences(annotations)
                target.add_field("scores", confidences)
            elif field == "attributes":
                attributes = self.add_attributes(annotations)
                target.add_field("attributes", attributes)
            elif field == "scores_all":
                scores_all = self.add_scores_all(annotations)
                target.add_field("scores_all", scores_all)
            elif field == "boxes_all":
                boxes_all = self.add_boxes_all(annotations)
                target.add_field("boxes_all", boxes_all)
            elif field == "feature":
                features = self.add_features(annotations)
                target.add_field("box_features", features)
            elif field == "mask":
                masks, is_box_mask = self.add_masks(annotations, img_size)
                target.add_field("masks", masks)
                target.add_field("is_box_mask", is_box_mask)

        target = target.clip_to_image(remove_empty=remove_empty)
        return target

    def get_box_mask(self, rect, img_size):
        x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
        if self.mask_mode == "poly":
            return [[x1, y1, x1, y2, x2, y2, x2, y1]]
        elif self.mask_mode == "mask":
            # note the order of height/width order in mask is opposite to image
            mask = np.zeros([img_size[1], img_size[0]], dtype=np.uint8)
            mask[math.floor(y1):math.ceil(y2), math.floor(x1):math.ceil(x2)] = 255
            encoded_mask = mask_utils.encode(np.asfortranarray(mask))
            encoded_mask["counts"] = encoded_mask["counts"].decode("utf-8")
            return encoded_mask

    def add_masks(self, annotations, img_size):
        masks = []
        is_box_mask = []
        for obj in annotations:
            if "mask" in obj:
                masks.append(obj["mask"])
                is_box_mask.append(0)
            else:
                masks.append(self.get_box_mask(obj["rect"], img_size))
                is_box_mask.append(1)
        masks = SegmentationMask(masks, img_size, mode=self.mask_mode)
        is_box_mask = torch.tensor(is_box_mask)
        return masks, is_box_mask

    def add_classes(self, annotations):
        class_names = [obj["class"] for obj in annotations]
        classes = [None] * len(class_names)
        for i in range(len(class_names)):
            classes[i] = self.labelmap['class_to_ind'][class_names[i]]
        return torch.tensor(classes)

    def add_confidences(self, annotations):
        confidences = []
        for obj in annotations:
            if "conf" in obj:
                confidences.append(obj["conf"])
            else:
                confidences.append(1.0)
        return torch.tensor(confidences)

    def add_attributes(self, annotations):
        # the maximal number of attributes per object is 16
        attributes = [[0] * 16 for _ in range(len(annotations))]
        for i, obj in enumerate(annotations):
            for j, attr in enumerate(obj["attributes"]):
                attributes[i][j] = self.labelmap['attribute_to_ind'][attr]
        return torch.tensor(attributes)

    def add_features(self, annotations):
        features = []
        for obj in annotations:
            features.append(np.frombuffer(base64.b64decode(obj['feature']), np.float32))
        return torch.tensor(features)

    def add_scores_all(self, annotations):
        scores_all = []
        for obj in annotations:
            scores_all.append(np.frombuffer(base64.b64decode(obj['scores_all']), np.float32))
        return torch.tensor(scores_all)

    def add_boxes_all(self, annotations):
        boxes_all = []
        for obj in annotations:
            boxes_all.append(np.frombuffer(base64.b64decode(obj['boxes_all']), np.float32).reshape(-1, 4))
        return torch.tensor(boxes_all)

    def relation_loader(self, relation_annos, target):
        if self.filter_duplicate_relations:
            # Filter out dupes!
            all_rel_sets = collections.defaultdict(list)
            for triplet in relation_annos:
                all_rel_sets[(triplet['subj_id'], triplet['obj_id'])].append(triplet)
            relation_annos = [np.random.choice(v) for v in all_rel_sets.values()]

        # get M*M pred_labels
        relation_triplets = []
        relations = torch.zeros([len(target), len(target)], dtype=torch.int64)
        for i in range(len(relation_annos)):
            if len(self.ignore_rel) != 0 and relation_annos[i]['class'] in self.ignore_rel:
                continue
            subj_id = relation_annos[i]['subj_id']
            obj_id = relation_annos[i]['obj_id']
            predicate = self.labelmap['relation_to_ind'][relation_annos[i]['class']]
            relations[subj_id, obj_id] = predicate
            relation_triplets.append([subj_id, obj_id, predicate])

        relation_triplets = torch.tensor(relation_triplets)
        target.add_field("relation_labels", relation_triplets)
        target.add_field("pred_labels", relations)
        return target


class BoxLabelLoader(object):
    def __init__(self, labelmap, extra_fields=(), ignore_attrs=(),

                 mask_mode="poly"):
        self.labelmap = labelmap
        self.extra_fields = extra_fields
        self.ignore_attrs = ignore_attrs
        assert mask_mode == "poly" or mask_mode == "mask"
        self.mask_mode = mask_mode
        self.all_fields = ["class", "mask", "confidence",
                           "attributes_encode", "IsGroupOf", "IsProposal"]

    def __call__(self, annotations, img_size, remove_empty=True):
        boxes = [obj["rect"] for obj in annotations]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)
        target = BoxList(boxes, img_size, mode="xyxy")

        for field in self.extra_fields:
            assert field in self.all_fields, "Unsupported field {}".format(field)
            if field == "class":
                classes = self.add_classes_with_ignore(annotations)
                target.add_field("labels", classes)
            elif field == "mask":
                masks, is_box_mask = self.add_masks(annotations, img_size)
                target.add_field("masks", masks)
                target.add_field("is_box_mask", is_box_mask)
            elif field == "confidence":
                confidences = self.add_confidences(annotations)
                target.add_field("confidences", confidences)
            elif field == "attributes_encode":
                attributes = self.add_attributes(annotations)
                target.add_field("attributes", attributes)
            elif field == "IsGroupOf":
                is_group = [1 if 'IsGroupOf' in obj and obj['IsGroupOf'] == 1 else 0
                            for obj in annotations]
                target.add_field("IsGroupOf", torch.tensor(is_group))
            elif field == "IsProposal":
                is_proposal = [1 if "IsProposal" in obj and obj['IsProposal'] == 1 else 0
                               for obj in annotations]
                target.add_field("IsProposal", torch.tensor(is_proposal))

        target = target.clip_to_image(remove_empty=remove_empty)
        return target

    def add_classes_with_ignore(self, annotations):
        class_names = [obj["class"] for obj in annotations]
        classes = [None] * len(class_names)
        if self.ignore_attrs:
            for i, obj in enumerate(annotations):
                if any([obj[attr] for attr in self.ignore_attrs if attr in obj]):
                    classes[i] = -1
        for i, cls in enumerate(classes):
            if cls != -1:
                classes[i] = self.labelmap[class_names[i]] + 1  # 0 is saved for background
        return torch.tensor(classes)

    def add_masks(self, annotations, img_size):
        masks = []
        is_box_mask = []
        for obj in annotations:
            if "mask" in obj:
                masks.append(obj["mask"])
                is_box_mask.append(0)
            else:
                masks.append(self.get_box_mask(obj["rect"], img_size))
                is_box_mask.append(1)
        masks = SegmentationMask(masks, img_size, mode=self.mask_mode)
        is_box_mask = torch.tensor(is_box_mask)
        return masks, is_box_mask

    def get_box_mask(self, rect, img_size):
        x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
        if self.mask_mode == "poly":
            return [[x1, y1, x1, y2, x2, y2, x2, y1]]
        elif self.mask_mode == "mask":
            # note the order of height/width order in mask is opposite to image
            mask = np.zeros([img_size[1], img_size[0]], dtype=np.uint8)
            mask[math.floor(y1):math.ceil(y2), math.floor(x1):math.ceil(x2)] = 255
            encoded_mask = mask_utils.encode(np.asfortranarray(mask))
            encoded_mask["counts"] = encoded_mask["counts"].decode("utf-8")
            return encoded_mask

    def add_confidences(self, annotations):
        confidences = []
        for obj in annotations:
            if "confidence" in obj:
                confidences.append(obj["confidence"])
            elif "conf" in obj:
                confidences.append(obj["conf"])
            else:
                confidences.append(1.0)
        return torch.tensor(confidences)

    def add_attributes(self, annotations):
        # we know that the maximal number of attributes per object is 16
        attributes = [[0] * 16 for _ in range(len(annotations))]
        for i, obj in enumerate(annotations):
            attributes[i][:len(obj["attributes_encode"])] = obj["attributes_encode"]
        return torch.tensor(attributes)