Spaces:
Build error
Build error
File size: 11,465 Bytes
708dec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import torch
import numpy as np
import math
import base64
import collections
import pycocotools.mask as mask_utils
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask
class LabelLoader(object):
def __init__(self, labelmap, extra_fields=(), filter_duplicate_relations=False, ignore_attr=None, ignore_rel=None,
mask_mode="poly"):
self.labelmap = labelmap
self.extra_fields = extra_fields
self.supported_fields = ["class", "conf", "attributes", 'scores_all', 'boxes_all', 'feature', "mask"]
self.filter_duplicate_relations = filter_duplicate_relations
self.ignore_attr = set(ignore_attr) if ignore_attr != None else set()
self.ignore_rel = set(ignore_rel) if ignore_rel != None else set()
assert mask_mode == "poly" or mask_mode == "mask"
self.mask_mode = mask_mode
def __call__(self, annotations, img_size, remove_empty=False, load_fields=None):
boxes = [obj["rect"] for obj in annotations]
boxes = torch.as_tensor(boxes).reshape(-1, 4)
target = BoxList(boxes, img_size, mode="xyxy")
if load_fields is None:
load_fields = self.extra_fields
for field in load_fields:
assert field in self.supported_fields, "Unsupported field {}".format(field)
if field == "class":
classes = self.add_classes(annotations)
target.add_field("labels", classes)
elif field == "conf":
confidences = self.add_confidences(annotations)
target.add_field("scores", confidences)
elif field == "attributes":
attributes = self.add_attributes(annotations)
target.add_field("attributes", attributes)
elif field == "scores_all":
scores_all = self.add_scores_all(annotations)
target.add_field("scores_all", scores_all)
elif field == "boxes_all":
boxes_all = self.add_boxes_all(annotations)
target.add_field("boxes_all", boxes_all)
elif field == "feature":
features = self.add_features(annotations)
target.add_field("box_features", features)
elif field == "mask":
masks, is_box_mask = self.add_masks(annotations, img_size)
target.add_field("masks", masks)
target.add_field("is_box_mask", is_box_mask)
target = target.clip_to_image(remove_empty=remove_empty)
return target
def get_box_mask(self, rect, img_size):
x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
if self.mask_mode == "poly":
return [[x1, y1, x1, y2, x2, y2, x2, y1]]
elif self.mask_mode == "mask":
# note the order of height/width order in mask is opposite to image
mask = np.zeros([img_size[1], img_size[0]], dtype=np.uint8)
mask[math.floor(y1):math.ceil(y2), math.floor(x1):math.ceil(x2)] = 255
encoded_mask = mask_utils.encode(np.asfortranarray(mask))
encoded_mask["counts"] = encoded_mask["counts"].decode("utf-8")
return encoded_mask
def add_masks(self, annotations, img_size):
masks = []
is_box_mask = []
for obj in annotations:
if "mask" in obj:
masks.append(obj["mask"])
is_box_mask.append(0)
else:
masks.append(self.get_box_mask(obj["rect"], img_size))
is_box_mask.append(1)
masks = SegmentationMask(masks, img_size, mode=self.mask_mode)
is_box_mask = torch.tensor(is_box_mask)
return masks, is_box_mask
def add_classes(self, annotations):
class_names = [obj["class"] for obj in annotations]
classes = [None] * len(class_names)
for i in range(len(class_names)):
classes[i] = self.labelmap['class_to_ind'][class_names[i]]
return torch.tensor(classes)
def add_confidences(self, annotations):
confidences = []
for obj in annotations:
if "conf" in obj:
confidences.append(obj["conf"])
else:
confidences.append(1.0)
return torch.tensor(confidences)
def add_attributes(self, annotations):
# the maximal number of attributes per object is 16
attributes = [[0] * 16 for _ in range(len(annotations))]
for i, obj in enumerate(annotations):
for j, attr in enumerate(obj["attributes"]):
attributes[i][j] = self.labelmap['attribute_to_ind'][attr]
return torch.tensor(attributes)
def add_features(self, annotations):
features = []
for obj in annotations:
features.append(np.frombuffer(base64.b64decode(obj['feature']), np.float32))
return torch.tensor(features)
def add_scores_all(self, annotations):
scores_all = []
for obj in annotations:
scores_all.append(np.frombuffer(base64.b64decode(obj['scores_all']), np.float32))
return torch.tensor(scores_all)
def add_boxes_all(self, annotations):
boxes_all = []
for obj in annotations:
boxes_all.append(np.frombuffer(base64.b64decode(obj['boxes_all']), np.float32).reshape(-1, 4))
return torch.tensor(boxes_all)
def relation_loader(self, relation_annos, target):
if self.filter_duplicate_relations:
# Filter out dupes!
all_rel_sets = collections.defaultdict(list)
for triplet in relation_annos:
all_rel_sets[(triplet['subj_id'], triplet['obj_id'])].append(triplet)
relation_annos = [np.random.choice(v) for v in all_rel_sets.values()]
# get M*M pred_labels
relation_triplets = []
relations = torch.zeros([len(target), len(target)], dtype=torch.int64)
for i in range(len(relation_annos)):
if len(self.ignore_rel) != 0 and relation_annos[i]['class'] in self.ignore_rel:
continue
subj_id = relation_annos[i]['subj_id']
obj_id = relation_annos[i]['obj_id']
predicate = self.labelmap['relation_to_ind'][relation_annos[i]['class']]
relations[subj_id, obj_id] = predicate
relation_triplets.append([subj_id, obj_id, predicate])
relation_triplets = torch.tensor(relation_triplets)
target.add_field("relation_labels", relation_triplets)
target.add_field("pred_labels", relations)
return target
class BoxLabelLoader(object):
def __init__(self, labelmap, extra_fields=(), ignore_attrs=(),
mask_mode="poly"):
self.labelmap = labelmap
self.extra_fields = extra_fields
self.ignore_attrs = ignore_attrs
assert mask_mode == "poly" or mask_mode == "mask"
self.mask_mode = mask_mode
self.all_fields = ["class", "mask", "confidence",
"attributes_encode", "IsGroupOf", "IsProposal"]
def __call__(self, annotations, img_size, remove_empty=True):
boxes = [obj["rect"] for obj in annotations]
boxes = torch.as_tensor(boxes).reshape(-1, 4)
target = BoxList(boxes, img_size, mode="xyxy")
for field in self.extra_fields:
assert field in self.all_fields, "Unsupported field {}".format(field)
if field == "class":
classes = self.add_classes_with_ignore(annotations)
target.add_field("labels", classes)
elif field == "mask":
masks, is_box_mask = self.add_masks(annotations, img_size)
target.add_field("masks", masks)
target.add_field("is_box_mask", is_box_mask)
elif field == "confidence":
confidences = self.add_confidences(annotations)
target.add_field("confidences", confidences)
elif field == "attributes_encode":
attributes = self.add_attributes(annotations)
target.add_field("attributes", attributes)
elif field == "IsGroupOf":
is_group = [1 if 'IsGroupOf' in obj and obj['IsGroupOf'] == 1 else 0
for obj in annotations]
target.add_field("IsGroupOf", torch.tensor(is_group))
elif field == "IsProposal":
is_proposal = [1 if "IsProposal" in obj and obj['IsProposal'] == 1 else 0
for obj in annotations]
target.add_field("IsProposal", torch.tensor(is_proposal))
target = target.clip_to_image(remove_empty=remove_empty)
return target
def add_classes_with_ignore(self, annotations):
class_names = [obj["class"] for obj in annotations]
classes = [None] * len(class_names)
if self.ignore_attrs:
for i, obj in enumerate(annotations):
if any([obj[attr] for attr in self.ignore_attrs if attr in obj]):
classes[i] = -1
for i, cls in enumerate(classes):
if cls != -1:
classes[i] = self.labelmap[class_names[i]] + 1 # 0 is saved for background
return torch.tensor(classes)
def add_masks(self, annotations, img_size):
masks = []
is_box_mask = []
for obj in annotations:
if "mask" in obj:
masks.append(obj["mask"])
is_box_mask.append(0)
else:
masks.append(self.get_box_mask(obj["rect"], img_size))
is_box_mask.append(1)
masks = SegmentationMask(masks, img_size, mode=self.mask_mode)
is_box_mask = torch.tensor(is_box_mask)
return masks, is_box_mask
def get_box_mask(self, rect, img_size):
x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
if self.mask_mode == "poly":
return [[x1, y1, x1, y2, x2, y2, x2, y1]]
elif self.mask_mode == "mask":
# note the order of height/width order in mask is opposite to image
mask = np.zeros([img_size[1], img_size[0]], dtype=np.uint8)
mask[math.floor(y1):math.ceil(y2), math.floor(x1):math.ceil(x2)] = 255
encoded_mask = mask_utils.encode(np.asfortranarray(mask))
encoded_mask["counts"] = encoded_mask["counts"].decode("utf-8")
return encoded_mask
def add_confidences(self, annotations):
confidences = []
for obj in annotations:
if "confidence" in obj:
confidences.append(obj["confidence"])
elif "conf" in obj:
confidences.append(obj["conf"])
else:
confidences.append(1.0)
return torch.tensor(confidences)
def add_attributes(self, annotations):
# we know that the maximal number of attributes per object is 16
attributes = [[0] * 16 for _ in range(len(annotations))]
for i, obj in enumerate(annotations):
attributes[i][:len(obj["attributes_encode"])] = obj["attributes_encode"]
return torch.tensor(attributes)
|