File size: 4,542 Bytes
708dec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import cv2
import numpy as np
import torch
from torch import nn

from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.keypoint import PersonKeypoints


class KeypointPostProcessor(nn.Module):
    def __init__(self, keypointer=None):
        super(KeypointPostProcessor, self).__init__()
        self.keypointer = keypointer

    def forward(self, x, boxes):
        mask_prob = x

        scores = None
        if self.keypointer:
            mask_prob, scores = self.keypointer(x, boxes)

        assert len(boxes) == 1, "Only non-batched inference supported for now"
        boxes_per_image = [box.bbox.size(0) for box in boxes]
        mask_prob = mask_prob.split(boxes_per_image, dim=0)
        scores = scores.split(boxes_per_image, dim=0)

        results = []
        for prob, box, score in zip(mask_prob, boxes, scores):
            bbox = BoxList(box.bbox, box.size, mode="xyxy")
            for field in box.fields():
                bbox.add_field(field, box.get_field(field))
            prob = PersonKeypoints(prob, box.size)
            prob.add_field("logits", score)
            bbox.add_field("keypoints", prob)
            results.append(bbox)

        return results


def heatmaps_to_keypoints(maps, rois):
    """Extract predicted keypoint locations from heatmaps. Output has shape

    (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob)

    for each keypoint.

    """
    # This function converts a discrete image coordinate in a HEATMAP_SIZE x
    # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain
    # consistency with keypoints_to_heatmap_labels by using the conversion from
    # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
    # continuous coordinate.
    offset_x = rois[:, 0]
    offset_y = rois[:, 1]

    widths = rois[:, 2] - rois[:, 0]
    heights = rois[:, 3] - rois[:, 1]
    widths = np.maximum(widths, 1)
    heights = np.maximum(heights, 1)
    widths_ceil = np.ceil(widths)
    heights_ceil = np.ceil(heights)

    # NCHW to NHWC for use with OpenCV
    maps = np.transpose(maps, [0, 2, 3, 1])
    min_size = 0  # cfg.KRCNN.INFERENCE_MIN_SIZE
    num_keypoints = maps.shape[3]
    xy_preds = np.zeros((len(rois), 3, num_keypoints), dtype=np.float32)
    end_scores = np.zeros((len(rois), num_keypoints), dtype=np.float32)
    for i in range(len(rois)):
        if min_size > 0:
            roi_map_width = int(np.maximum(widths_ceil[i], min_size))
            roi_map_height = int(np.maximum(heights_ceil[i], min_size))
        else:
            roi_map_width = widths_ceil[i]
            roi_map_height = heights_ceil[i]
        width_correction = widths[i] / roi_map_width
        height_correction = heights[i] / roi_map_height
        roi_map = cv2.resize(
            maps[i], (roi_map_width, roi_map_height), interpolation=cv2.INTER_CUBIC
        )
        # Bring back to CHW
        roi_map = np.transpose(roi_map, [2, 0, 1])
        # roi_map_probs = scores_to_probs(roi_map.copy())
        w = roi_map.shape[2]
        pos = roi_map.reshape(num_keypoints, -1).argmax(axis=1)
        x_int = pos % w
        y_int = (pos - x_int) // w
        # assert (roi_map_probs[k, y_int, x_int] ==
        #         roi_map_probs[k, :, :].max())
        x = (x_int + 0.5) * width_correction
        y = (y_int + 0.5) * height_correction
        xy_preds[i, 0, :] = x + offset_x[i]
        xy_preds[i, 1, :] = y + offset_y[i]
        xy_preds[i, 2, :] = 1
        end_scores[i, :] = roi_map[np.arange(num_keypoints), y_int, x_int]

    return np.transpose(xy_preds, [0, 2, 1]), end_scores


class Keypointer(object):
    """

    Projects a set of masks in an image on the locations

    specified by the bounding boxes

    """

    def __init__(self, padding=0):
        self.padding = padding

    def __call__(self, masks, boxes):
        # TODO do this properly
        if isinstance(boxes, BoxList):
            boxes = [boxes]
        assert len(boxes) == 1

        result, scores = heatmaps_to_keypoints(
            masks.detach().cpu().numpy(), boxes[0].bbox.cpu().numpy()
        )
        return torch.from_numpy(result).to(masks.device), torch.as_tensor(scores, device=masks.device)


def make_roi_keypoint_post_processor(cfg):
    keypointer = Keypointer()
    keypoint_post_processor = KeypointPostProcessor(keypointer)
    return keypoint_post_processor