File size: 7,284 Bytes
708dec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import torch
from torch.nn import functional as F

from maskrcnn_benchmark.modeling.matcher import Matcher

from maskrcnn_benchmark.modeling.balanced_positive_negative_sampler import (
    BalancedPositiveNegativeSampler,
)
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.modeling.utils import cat
from maskrcnn_benchmark.layers import smooth_l1_loss
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist

from maskrcnn_benchmark.structures.keypoint import keypoints_to_heat_map


def project_keypoints_to_heatmap(keypoints, proposals, discretization_size):
    proposals = proposals.convert("xyxy")
    return keypoints_to_heat_map(
        keypoints.keypoints, proposals.bbox, discretization_size
    )


def cat_boxlist_with_keypoints(boxlists):
    assert all(boxlist.has_field("keypoints") for boxlist in boxlists)

    kp = [boxlist.get_field("keypoints").keypoints for boxlist in boxlists]
    kp = cat(kp, 0)

    fields = boxlists[0].get_fields()
    fields = [field for field in fields if field != "keypoints"]

    boxlists = [boxlist.copy_with_fields(fields) for boxlist in boxlists]
    boxlists = cat_boxlist(boxlists)
    boxlists.add_field("keypoints", kp)
    return boxlists


def _within_box(points, boxes):
    """Validate which keypoints are contained inside a given box.

    points: NxKx2

    boxes: Nx4

    output: NxK

    """
    x_within = (points[..., 0] >= boxes[:, 0, None]) & (
        points[..., 0] <= boxes[:, 2, None]
    )
    y_within = (points[..., 1] >= boxes[:, 1, None]) & (
        points[..., 1] <= boxes[:, 3, None]
    )
    return x_within & y_within


class KeypointRCNNLossComputation(object):
    def __init__(self, proposal_matcher, fg_bg_sampler, discretization_size):
        """

        Arguments:

            proposal_matcher (Matcher)

            fg_bg_sampler (BalancedPositiveNegativeSampler)

            discretization_size (int)

        """
        self.proposal_matcher = proposal_matcher
        self.fg_bg_sampler = fg_bg_sampler
        self.discretization_size = discretization_size

    def match_targets_to_proposals(self, proposal, target):
        match_quality_matrix = boxlist_iou(target, proposal)
        matched_idxs = self.proposal_matcher(match_quality_matrix)
        # Keypoint RCNN needs "labels" and "keypoints "fields for creating the targets
        target = target.copy_with_fields(["labels", "keypoints"])
        # get the targets corresponding GT for each proposal
        # NB: need to clamp the indices because we can have a single
        # GT in the image, and matched_idxs can be -2, which goes
        # out of bounds
        matched_targets = target[matched_idxs.clamp(min=0)]
        matched_targets.add_field("matched_idxs", matched_idxs)
        return matched_targets

    def prepare_targets(self, proposals, targets):
        labels = []
        keypoints = []
        for proposals_per_image, targets_per_image in zip(proposals, targets):
            matched_targets = self.match_targets_to_proposals(
                proposals_per_image, targets_per_image
            )
            matched_idxs = matched_targets.get_field("matched_idxs")

            labels_per_image = matched_targets.get_field("labels")
            labels_per_image = labels_per_image.to(dtype=torch.int64)

            # this can probably be removed, but is left here for clarity
            # and completeness
            # TODO check if this is the right one, as BELOW_THRESHOLD
            neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD
            labels_per_image[neg_inds] = 0

            keypoints_per_image = matched_targets.get_field("keypoints")
            within_box = _within_box(
                keypoints_per_image.keypoints, matched_targets.bbox
            )
            vis_kp = keypoints_per_image.keypoints[..., 2] > 0
            is_visible = (within_box & vis_kp).sum(1) > 0

            labels_per_image[~is_visible] = -1

            labels.append(labels_per_image)
            keypoints.append(keypoints_per_image)

        return labels, keypoints

    def subsample(self, proposals, targets):
        """

        This method performs the positive/negative sampling, and return

        the sampled proposals.

        Note: this function keeps a state.



        Arguments:

            proposals (list[BoxList])

            targets (list[BoxList])

        """

        labels, keypoints = self.prepare_targets(proposals, targets)
        sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)

        proposals = list(proposals)
        # add corresponding label and regression_targets information to the bounding boxes
        for labels_per_image, keypoints_per_image, proposals_per_image in zip(
            labels, keypoints, proposals
        ):
            proposals_per_image.add_field("labels", labels_per_image)
            proposals_per_image.add_field("keypoints", keypoints_per_image)

        # distributed sampled proposals, that were obtained on all feature maps
        # concatenated via the fg_bg_sampler, into individual feature map levels
        for img_idx, (pos_inds_img, neg_inds_img) in enumerate(
            zip(sampled_pos_inds, sampled_neg_inds)
        ):
            img_sampled_inds = torch.nonzero(pos_inds_img).squeeze(1)
            proposals_per_image = proposals[img_idx][img_sampled_inds]
            proposals[img_idx] = proposals_per_image

        self._proposals = proposals
        return proposals

    def __call__(self, proposals, keypoint_logits):
        heatmaps = []
        valid = []
        for proposals_per_image in proposals:
            kp = proposals_per_image.get_field("keypoints")
            heatmaps_per_image, valid_per_image = project_keypoints_to_heatmap(
                kp, proposals_per_image, self.discretization_size
            )
            heatmaps.append(heatmaps_per_image.view(-1))
            valid.append(valid_per_image.view(-1))

        keypoint_targets = cat(heatmaps, dim=0)
        valid = cat(valid, dim=0).to(dtype=torch.bool)
        valid = torch.nonzero(valid).squeeze(1)

        # torch.mean (in binary_cross_entropy_with_logits) does'nt
        # accept empty tensors, so handle it sepaartely
        if keypoint_targets.numel() == 0 or len(valid) == 0:
            return keypoint_logits.sum() * 0

        N, K, H, W = keypoint_logits.shape
        keypoint_logits = keypoint_logits.view(N * K, H * W)

        keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid])
        return keypoint_loss


def make_roi_keypoint_loss_evaluator(cfg):
    matcher = Matcher(
        cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD,
        cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD,
        allow_low_quality_matches=False,
    )
    fg_bg_sampler = BalancedPositiveNegativeSampler(
        cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE, cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION
    )
    resolution = cfg.MODEL.ROI_KEYPOINT_HEAD.RESOLUTION
    loss_evaluator = KeypointRCNNLossComputation(matcher, fg_bg_sampler, resolution)
    return loss_evaluator