Spaces:
Build error
Build error
File size: 18,971 Bytes
708dec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import cv2
import torch
import re
import numpy as np
from typing import List, Union
import nltk
import inflect
from transformers import AutoTokenizer
from torchvision import transforms as T
import pdb
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark import layers as L
from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker
from maskrcnn_benchmark.utils import cv2_util
engine = inflect.engine()
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
import timeit
class GLIPDemo(object):
def __init__(self,
cfg,
confidence_threshold=0.7,
min_image_size=None,
show_mask_heatmaps=False,
masks_per_dim=5,
load_model=True
):
self.cfg = cfg.clone()
if load_model:
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.min_image_size = min_image_size
self.show_mask_heatmaps = show_mask_heatmaps
self.masks_per_dim = masks_per_dim
save_dir = cfg.OUTPUT_DIR
if load_model:
checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.transforms = self.build_transform()
# used to make colors for each tokens
mask_threshold = -1 if show_mask_heatmaps else 0.5
self.masker = Masker(threshold=mask_threshold, padding=1)
self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.tokenizer = self.build_tokenizer()
def build_transform(self):
"""
Creates a basic transformation that was used to train the models
"""
cfg = self.cfg
# we are loading images with OpenCV, so we don't need to convert them
# to BGR, they are already! So all we need to do is to normalize
# by 255 if we want to convert to BGR255 format, or flip the channels
# if we want it to be in RGB in [0-1] range.
if cfg.INPUT.TO_BGR255:
to_bgr_transform = T.Lambda(lambda x: x * 255)
else:
to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])
normalize_transform = T.Normalize(
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
)
transform = T.Compose(
[
T.ToPILImage(),
T.Resize(self.min_image_size) if self.min_image_size is not None else lambda x: x,
T.ToTensor(),
to_bgr_transform,
normalize_transform,
]
)
return transform
def build_tokenizer(self):
cfg = self.cfg
tokenizer = None
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
from transformers import CLIPTokenizerFast
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
from_slow=True, mask_token='ðŁĴij</w>')
else:
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
from_slow=True)
return tokenizer
def run_ner(self, caption):
noun_phrases = find_noun_phrases(caption)
noun_phrases = [remove_punctuation(phrase) for phrase in noun_phrases]
noun_phrases = [phrase for phrase in noun_phrases if phrase != '']
relevant_phrases = noun_phrases
labels = noun_phrases
self.entities = labels
tokens_positive = []
for entity, label in zip(relevant_phrases, labels):
try:
# search all occurrences and mark them as different entities
for m in re.finditer(entity, caption.lower()):
tokens_positive.append([[m.start(), m.end()]])
except:
print("noun entities:", noun_phrases)
print("entity:", entity)
print("caption:", caption.lower())
return tokens_positive
def inference(self, original_image, original_caption):
predictions = self.compute_prediction(original_image, original_caption)
top_predictions = self._post_process_fixed_thresh(predictions)
return top_predictions
def run_on_web_image(self,
original_image,
original_caption,
thresh=0.5,
custom_entity=None,
alpha=0.0):
predictions = self.compute_prediction(original_image, original_caption, custom_entity)
top_predictions = self._post_process(predictions, thresh)
result = original_image.copy()
if self.show_mask_heatmaps:
return self.create_mask_montage(result, top_predictions)
result = self.overlay_boxes(result, top_predictions)
result = self.overlay_entity_names(result, top_predictions)
if self.cfg.MODEL.MASK_ON:
result = self.overlay_mask(result, top_predictions)
return result, top_predictions
def visualize_with_predictions(self,
original_image,
predictions,
thresh=0.5,
alpha=0.0,
box_pixel=3,
text_size=1,
text_pixel=2,
text_offset=10,
text_offset_original=4,
color=255):
self.color = color
height, width = original_image.shape[:-1]
predictions = predictions.resize((width, height))
top_predictions = self._post_process(predictions, thresh)
result = original_image.copy()
if self.show_mask_heatmaps:
return self.create_mask_montage(result, top_predictions)
result = self.overlay_boxes(result, top_predictions, alpha=alpha, box_pixel=box_pixel)
result = self.overlay_entity_names(result, top_predictions, text_size=text_size, text_pixel=text_pixel,
text_offset=text_offset, text_offset_original=text_offset_original)
if self.cfg.MODEL.MASK_ON:
result = self.overlay_mask(result, top_predictions)
return result, top_predictions
def compute_prediction(self, original_image, original_caption, custom_entity=None):
# image
image = self.transforms(original_image)
image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY)
image_list = image_list.to(self.device)
# caption
if isinstance(original_caption, list):
# we directly provided a list of category names
caption_string = ""
tokens_positive = []
seperation_tokens = " . "
for word in original_caption:
tokens_positive.append([len(caption_string), len(caption_string) + len(word)])
caption_string += word
caption_string += seperation_tokens
tokenized = self.tokenizer([caption_string], return_tensors="pt")
tokens_positive = [tokens_positive]
original_caption = caption_string
print(tokens_positive)
else:
tokenized = self.tokenizer([original_caption], return_tensors="pt")
if custom_entity is None:
tokens_positive = self.run_ner(original_caption)
print(tokens_positive)
# process positive map
positive_map = create_positive_map(tokenized, tokens_positive)
if self.cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
plus = 1
else:
plus = 0
positive_map_label_to_token = create_positive_map_label_to_token_from_positive_map(positive_map, plus=plus)
self.plus = plus
self.positive_map_label_to_token = positive_map_label_to_token
tic = timeit.time.perf_counter()
# compute predictions
with torch.no_grad():
predictions = self.model(image_list, captions=[original_caption], positive_map=positive_map_label_to_token)
predictions = [o.to(self.cpu_device) for o in predictions]
print("inference time per image: {}".format(timeit.time.perf_counter() - tic))
# always single image is passed at a time
prediction = predictions[0]
# reshape prediction (a BoxList) into the original image size
height, width = original_image.shape[:-1]
prediction = prediction.resize((width, height))
if prediction.has_field("mask"):
# if we have masks, paste the masks in the right position
# in the image, as defined by the bounding boxes
masks = prediction.get_field("mask")
# always single image is passed at a time
masks = self.masker([masks], [prediction])[0]
prediction.add_field("mask", masks)
return prediction
def _post_process_fixed_thresh(self, predictions):
scores = predictions.get_field("scores")
labels = predictions.get_field("labels").tolist()
thresh = scores.clone()
for i, lb in enumerate(labels):
if isinstance(self.confidence_threshold, float):
thresh[i] = self.confidence_threshold
elif len(self.confidence_threshold) == 1:
thresh[i] = self.confidence_threshold[0]
else:
thresh[i] = self.confidence_threshold[lb - 1]
keep = torch.nonzero(scores > thresh).squeeze(1)
predictions = predictions[keep]
scores = predictions.get_field("scores")
_, idx = scores.sort(0, descending=True)
return predictions[idx]
def _post_process(self, predictions, threshold=0.5):
scores = predictions.get_field("scores")
labels = predictions.get_field("labels").tolist()
thresh = scores.clone()
for i, lb in enumerate(labels):
if isinstance(self.confidence_threshold, float):
thresh[i] = threshold
elif len(self.confidence_threshold) == 1:
thresh[i] = threshold
else:
thresh[i] = self.confidence_threshold[lb - 1]
keep = torch.nonzero(scores > thresh).squeeze(1)
predictions = predictions[keep]
scores = predictions.get_field("scores")
_, idx = scores.sort(0, descending=True)
return predictions[idx]
def compute_colors_for_labels(self, labels):
"""
Simple function that adds fixed colors depending on the class
"""
colors = (300 * (labels[:, None] - 1) + 1) * self.palette
colors = (colors % 255).numpy().astype("uint8")
try:
colors = (colors * 0 + self.color).astype("uint8")
except:
pass
return colors
def overlay_boxes(self, image, predictions, alpha=0.5, box_pixel=3):
labels = predictions.get_field("labels")
boxes = predictions.bbox
colors = self.compute_colors_for_labels(labels).tolist()
new_image = image.copy()
for box, color in zip(boxes, colors):
box = box.to(torch.int64)
top_left, bottom_right = box[:2].tolist(), box[2:].tolist()
new_image = cv2.rectangle(
new_image, tuple(top_left), tuple(bottom_right), tuple(color), box_pixel)
# Following line overlays transparent rectangle over the image
image = cv2.addWeighted(new_image, alpha, image, 1 - alpha, 0)
return image
def overlay_scores(self, image, predictions):
scores = predictions.get_field("scores")
boxes = predictions.bbox
for box, score in zip(boxes, scores):
box = box.to(torch.int64)
image = cv2.putText(image, '%.3f' % score,
(int(box[0]), int((box[1] + box[3]) / 2)),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 2, cv2.LINE_AA)
return image
def overlay_entity_names(self, image, predictions, names=None, text_size=0.7, text_pixel=2, text_offset=10,
text_offset_original=4):
scores = predictions.get_field("scores").tolist()
labels = predictions.get_field("labels").tolist()
new_labels = []
if self.cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
plus = 1
else:
plus = 0
self.plus = plus
if self.entities and self.plus:
for i in labels:
if i <= len(self.entities):
new_labels.append(self.entities[i - self.plus])
else:
new_labels.append('object')
# labels = [self.entities[i - self.plus] for i in labels ]
else:
new_labels = ['object' for i in labels]
boxes = predictions.bbox
template = "{}:{:.2f}"
previous_locations = []
for box, score, label in zip(boxes, scores, new_labels):
x, y = box[:2]
s = template.format(label, score).replace("_", " ").replace("(", "").replace(")", "")
for x_prev, y_prev in previous_locations:
if abs(x - x_prev) < abs(text_offset) and abs(y - y_prev) < abs(text_offset):
y -= text_offset
cv2.putText(
image, s, (int(x), int(y) - text_offset_original), cv2.FONT_HERSHEY_SIMPLEX, text_size,
(255, 255, 255), text_pixel, cv2.LINE_AA
)
previous_locations.append((int(x), int(y)))
return image
def overlay_mask(self, image, predictions):
masks = predictions.get_field("mask").numpy()
labels = predictions.get_field("labels")
colors = self.compute_colors_for_labels(labels).tolist()
# import pdb
# pdb.set_trace()
# masks = masks > 0.1
for mask, color in zip(masks, colors):
thresh = mask[0, :, :, None].astype(np.uint8)
contours, hierarchy = cv2_util.findContours(
thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
image = cv2.drawContours(image, contours, -1, color, 2)
composite = image
return composite
def create_mask_montage(self, image, predictions):
masks = predictions.get_field("mask")
masks_per_dim = self.masks_per_dim
masks = L.interpolate(
masks.float(), scale_factor=1 / masks_per_dim
).byte()
height, width = masks.shape[-2:]
max_masks = masks_per_dim ** 2
masks = masks[:max_masks]
# handle case where we have less detections than max_masks
if len(masks) < max_masks:
masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8)
masks_padded[: len(masks)] = masks
masks = masks_padded
masks = masks.reshape(masks_per_dim, masks_per_dim, height, width)
result = torch.zeros(
(masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8
)
for y in range(masks_per_dim):
start_y = y * height
end_y = (y + 1) * height
for x in range(masks_per_dim):
start_x = x * width
end_x = (x + 1) * width
result[start_y:end_y, start_x:end_x] = masks[y, x]
return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET), None
def create_positive_map_label_to_token_from_positive_map(positive_map, plus=0):
positive_map_label_to_token = {}
for i in range(len(positive_map)):
positive_map_label_to_token[i + plus] = torch.nonzero(positive_map[i], as_tuple=True)[0].tolist()
return positive_map_label_to_token
def create_positive_map(tokenized, tokens_positive):
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j"""
positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float)
for j, tok_list in enumerate(tokens_positive):
for (beg, end) in tok_list:
try:
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
except Exception as e:
print("beg:", beg, "end:", end)
print("token_positive:", tokens_positive)
# print("beg_pos:", beg_pos, "end_pos:", end_pos)
raise e
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
positive_map[j, beg_pos: end_pos + 1].fill_(1)
return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)
def find_noun_phrases(caption: str) -> List[str]:
caption = caption.lower()
tokens = nltk.word_tokenize(caption)
pos_tags = nltk.pos_tag(tokens)
grammar = "NP: {<DT>?<JJ.*>*<NN.*>+}"
cp = nltk.RegexpParser(grammar)
result = cp.parse(pos_tags)
noun_phrases = list()
for subtree in result.subtrees():
if subtree.label() == 'NP':
noun_phrases.append(' '.join(t[0] for t in subtree.leaves()))
return noun_phrases
def remove_punctuation(text: str) -> str:
punct = ['|', ':', ';', '@', '(', ')', '[', ']', '{', '}', '^',
'\'', '\"', '’', '`', '?', '$', '%', '#', '!', '&', '*', '+', ',', '.'
]
for p in punct:
text = text.replace(p, '')
return text.strip()
|