File size: 18,971 Bytes
708dec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import cv2
import torch
import re
import numpy as np
from typing import List, Union
import nltk
import inflect
from transformers import AutoTokenizer
from torchvision import transforms as T
import pdb
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark import layers as L
from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker
from maskrcnn_benchmark.utils import cv2_util

engine = inflect.engine()
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')

import timeit


class GLIPDemo(object):
    def __init__(self,
                 cfg,
                 confidence_threshold=0.7,
                 min_image_size=None,
                 show_mask_heatmaps=False,
                 masks_per_dim=5,
                 load_model=True
                 ):
        self.cfg = cfg.clone()
        if load_model:
            self.model = build_detection_model(cfg)
            self.model.eval()
            self.device = torch.device(cfg.MODEL.DEVICE)
            self.model.to(self.device)
        self.min_image_size = min_image_size
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim

        save_dir = cfg.OUTPUT_DIR
        if load_model:
            checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
            _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        # used to make colors for each tokens
        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold

        self.tokenizer = self.build_tokenizer()

    def build_transform(self):
        """
        Creates a basic transformation that was used to train the models
        """
        cfg = self.cfg

        # we are loading images with OpenCV, so we don't need to convert them
        # to BGR, they are already! So all we need to do is to normalize
        # by 255 if we want to convert to BGR255 format, or flip the channels
        # if we want it to be in RGB in [0-1] range.
        if cfg.INPUT.TO_BGR255:
            to_bgr_transform = T.Lambda(lambda x: x * 255)
        else:
            to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])

        normalize_transform = T.Normalize(
            mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
        )

        transform = T.Compose(
            [
                T.ToPILImage(),
                T.Resize(self.min_image_size) if self.min_image_size is not None else lambda x: x,
                T.ToTensor(),
                to_bgr_transform,
                normalize_transform,
            ]
        )
        return transform

    def build_tokenizer(self):
        cfg = self.cfg
        tokenizer = None
        if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "bert-base-uncased":
            tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        elif cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
            from transformers import CLIPTokenizerFast
            if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
                tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
                                                              from_slow=True, mask_token='ðŁĴij</w>')
            else:
                tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
                                                              from_slow=True)
        return tokenizer

    def run_ner(self, caption):
        noun_phrases = find_noun_phrases(caption)
        noun_phrases = [remove_punctuation(phrase) for phrase in noun_phrases]
        noun_phrases = [phrase for phrase in noun_phrases if phrase != '']
        relevant_phrases = noun_phrases
        labels = noun_phrases
        self.entities = labels

        tokens_positive = []

        for entity, label in zip(relevant_phrases, labels):
            try:
                # search all occurrences and mark them as different entities
                for m in re.finditer(entity, caption.lower()):
                    tokens_positive.append([[m.start(), m.end()]])
            except:
                print("noun entities:", noun_phrases)
                print("entity:", entity)
                print("caption:", caption.lower())

        return tokens_positive

    def inference(self, original_image, original_caption):
        predictions = self.compute_prediction(original_image, original_caption)
        top_predictions = self._post_process_fixed_thresh(predictions)
        return top_predictions

    def run_on_web_image(self,
                         original_image,
                         original_caption,
                         thresh=0.5,
                         custom_entity=None,
                         alpha=0.0):
        predictions = self.compute_prediction(original_image, original_caption, custom_entity)
        top_predictions = self._post_process(predictions, thresh)

        result = original_image.copy()
        if self.show_mask_heatmaps:
            return self.create_mask_montage(result, top_predictions)
        result = self.overlay_boxes(result, top_predictions)
        result = self.overlay_entity_names(result, top_predictions)
        if self.cfg.MODEL.MASK_ON:
            result = self.overlay_mask(result, top_predictions)
        return result, top_predictions

    def visualize_with_predictions(self,
                                   original_image,
                                   predictions,
                                   thresh=0.5,
                                   alpha=0.0,
                                   box_pixel=3,
                                   text_size=1,
                                   text_pixel=2,
                                   text_offset=10,
                                   text_offset_original=4,
                                   color=255):
        self.color = color
        height, width = original_image.shape[:-1]
        predictions = predictions.resize((width, height))
        top_predictions = self._post_process(predictions, thresh)

        result = original_image.copy()
        if self.show_mask_heatmaps:
            return self.create_mask_montage(result, top_predictions)
        result = self.overlay_boxes(result, top_predictions, alpha=alpha, box_pixel=box_pixel)
        result = self.overlay_entity_names(result, top_predictions, text_size=text_size, text_pixel=text_pixel,
                                           text_offset=text_offset, text_offset_original=text_offset_original)
        if self.cfg.MODEL.MASK_ON:
            result = self.overlay_mask(result, top_predictions)
        return result, top_predictions

    def compute_prediction(self, original_image, original_caption, custom_entity=None):
        # image
        image = self.transforms(original_image)
        image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY)
        image_list = image_list.to(self.device)
        # caption
        if isinstance(original_caption, list):
            # we directly provided a list of category names
            caption_string = ""
            tokens_positive = []
            seperation_tokens = " . "
            for word in original_caption:
                tokens_positive.append([len(caption_string), len(caption_string) + len(word)])
                caption_string += word
                caption_string += seperation_tokens

            tokenized = self.tokenizer([caption_string], return_tensors="pt")
            tokens_positive = [tokens_positive]

            original_caption = caption_string
            print(tokens_positive)
        else:
            tokenized = self.tokenizer([original_caption], return_tensors="pt")
            if custom_entity is None:
                tokens_positive = self.run_ner(original_caption)
            print(tokens_positive)
        # process positive map
        positive_map = create_positive_map(tokenized, tokens_positive)

        if self.cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
            plus = 1
        else:
            plus = 0

        positive_map_label_to_token = create_positive_map_label_to_token_from_positive_map(positive_map, plus=plus)
        self.plus = plus
        self.positive_map_label_to_token = positive_map_label_to_token
        tic = timeit.time.perf_counter()

        # compute predictions
        with torch.no_grad():
            predictions = self.model(image_list, captions=[original_caption], positive_map=positive_map_label_to_token)
            predictions = [o.to(self.cpu_device) for o in predictions]
        print("inference time per image: {}".format(timeit.time.perf_counter() - tic))

        # always single image is passed at a time
        prediction = predictions[0]

        # reshape prediction (a BoxList) into the original image size
        height, width = original_image.shape[:-1]
        prediction = prediction.resize((width, height))

        if prediction.has_field("mask"):
            # if we have masks, paste the masks in the right position
            # in the image, as defined by the bounding boxes
            masks = prediction.get_field("mask")
            # always single image is passed at a time
            masks = self.masker([masks], [prediction])[0]
            prediction.add_field("mask", masks)

        return prediction

    def _post_process_fixed_thresh(self, predictions):
        scores = predictions.get_field("scores")
        labels = predictions.get_field("labels").tolist()
        thresh = scores.clone()
        for i, lb in enumerate(labels):
            if isinstance(self.confidence_threshold, float):
                thresh[i] = self.confidence_threshold
            elif len(self.confidence_threshold) == 1:
                thresh[i] = self.confidence_threshold[0]
            else:
                thresh[i] = self.confidence_threshold[lb - 1]
        keep = torch.nonzero(scores > thresh).squeeze(1)
        predictions = predictions[keep]

        scores = predictions.get_field("scores")
        _, idx = scores.sort(0, descending=True)
        return predictions[idx]

    def _post_process(self, predictions, threshold=0.5):
        scores = predictions.get_field("scores")
        labels = predictions.get_field("labels").tolist()
        thresh = scores.clone()
        for i, lb in enumerate(labels):
            if isinstance(self.confidence_threshold, float):
                thresh[i] = threshold
            elif len(self.confidence_threshold) == 1:
                thresh[i] = threshold
            else:
                thresh[i] = self.confidence_threshold[lb - 1]
        keep = torch.nonzero(scores > thresh).squeeze(1)
        predictions = predictions[keep]

        scores = predictions.get_field("scores")
        _, idx = scores.sort(0, descending=True)
        return predictions[idx]

    def compute_colors_for_labels(self, labels):
        """
        Simple function that adds fixed colors depending on the class
        """
        colors = (300 * (labels[:, None] - 1) + 1) * self.palette
        colors = (colors % 255).numpy().astype("uint8")
        try:
            colors = (colors * 0 + self.color).astype("uint8")
        except:
            pass
        return colors

    def overlay_boxes(self, image, predictions, alpha=0.5, box_pixel=3):
        labels = predictions.get_field("labels")
        boxes = predictions.bbox

        colors = self.compute_colors_for_labels(labels).tolist()
        new_image = image.copy()
        for box, color in zip(boxes, colors):
            box = box.to(torch.int64)
            top_left, bottom_right = box[:2].tolist(), box[2:].tolist()
            new_image = cv2.rectangle(
                new_image, tuple(top_left), tuple(bottom_right), tuple(color), box_pixel)

        # Following line overlays transparent rectangle over the image
        image = cv2.addWeighted(new_image, alpha, image, 1 - alpha, 0)

        return image

    def overlay_scores(self, image, predictions):
        scores = predictions.get_field("scores")
        boxes = predictions.bbox

        for box, score in zip(boxes, scores):
            box = box.to(torch.int64)
            image = cv2.putText(image, '%.3f' % score,
                                (int(box[0]), int((box[1] + box[3]) / 2)),
                                cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 2, cv2.LINE_AA)

        return image

    def overlay_entity_names(self, image, predictions, names=None, text_size=0.7, text_pixel=2, text_offset=10,
                             text_offset_original=4):
        scores = predictions.get_field("scores").tolist()
        labels = predictions.get_field("labels").tolist()
        new_labels = []
        if self.cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
            plus = 1
        else:
            plus = 0
        self.plus = plus
        if self.entities and self.plus:
            for i in labels:
                if i <= len(self.entities):
                    new_labels.append(self.entities[i - self.plus])
                else:
                    new_labels.append('object')
            # labels = [self.entities[i - self.plus] for i in labels ]
        else:
            new_labels = ['object' for i in labels]
        boxes = predictions.bbox

        template = "{}:{:.2f}"
        previous_locations = []
        for box, score, label in zip(boxes, scores, new_labels):
            x, y = box[:2]
            s = template.format(label, score).replace("_", " ").replace("(", "").replace(")", "")
            for x_prev, y_prev in previous_locations:
                if abs(x - x_prev) < abs(text_offset) and abs(y - y_prev) < abs(text_offset):
                    y -= text_offset

            cv2.putText(
                image, s, (int(x), int(y) - text_offset_original), cv2.FONT_HERSHEY_SIMPLEX, text_size,
                (255, 255, 255), text_pixel, cv2.LINE_AA
            )
            previous_locations.append((int(x), int(y)))

        return image

    def overlay_mask(self, image, predictions):
        masks = predictions.get_field("mask").numpy()
        labels = predictions.get_field("labels")

        colors = self.compute_colors_for_labels(labels).tolist()

        # import pdb
        # pdb.set_trace()
        # masks = masks > 0.1

        for mask, color in zip(masks, colors):
            thresh = mask[0, :, :, None].astype(np.uint8)
            contours, hierarchy = cv2_util.findContours(
                thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
            )
            image = cv2.drawContours(image, contours, -1, color, 2)

        composite = image

        return composite

    def create_mask_montage(self, image, predictions):
        masks = predictions.get_field("mask")
        masks_per_dim = self.masks_per_dim
        masks = L.interpolate(
            masks.float(), scale_factor=1 / masks_per_dim
        ).byte()
        height, width = masks.shape[-2:]
        max_masks = masks_per_dim ** 2
        masks = masks[:max_masks]
        # handle case where we have less detections than max_masks
        if len(masks) < max_masks:
            masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8)
            masks_padded[: len(masks)] = masks
            masks = masks_padded
        masks = masks.reshape(masks_per_dim, masks_per_dim, height, width)
        result = torch.zeros(
            (masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8
        )
        for y in range(masks_per_dim):
            start_y = y * height
            end_y = (y + 1) * height
            for x in range(masks_per_dim):
                start_x = x * width
                end_x = (x + 1) * width
                result[start_y:end_y, start_x:end_x] = masks[y, x]

        return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET), None


def create_positive_map_label_to_token_from_positive_map(positive_map, plus=0):
    positive_map_label_to_token = {}
    for i in range(len(positive_map)):
        positive_map_label_to_token[i + plus] = torch.nonzero(positive_map[i], as_tuple=True)[0].tolist()
    return positive_map_label_to_token


def create_positive_map(tokenized, tokens_positive):
    """construct a map such that positive_map[i,j] = True iff box i is associated to token j"""
    positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float)

    for j, tok_list in enumerate(tokens_positive):
        for (beg, end) in tok_list:
            try:
                beg_pos = tokenized.char_to_token(beg)
                end_pos = tokenized.char_to_token(end - 1)
            except Exception as e:
                print("beg:", beg, "end:", end)
                print("token_positive:", tokens_positive)
                # print("beg_pos:", beg_pos, "end_pos:", end_pos)
                raise e
            if beg_pos is None:
                try:
                    beg_pos = tokenized.char_to_token(beg + 1)
                    if beg_pos is None:
                        beg_pos = tokenized.char_to_token(beg + 2)
                except:
                    beg_pos = None
            if end_pos is None:
                try:
                    end_pos = tokenized.char_to_token(end - 2)
                    if end_pos is None:
                        end_pos = tokenized.char_to_token(end - 3)
                except:
                    end_pos = None
            if beg_pos is None or end_pos is None:
                continue

            assert beg_pos is not None and end_pos is not None
            positive_map[j, beg_pos: end_pos + 1].fill_(1)
    return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)


def find_noun_phrases(caption: str) -> List[str]:
    caption = caption.lower()
    tokens = nltk.word_tokenize(caption)
    pos_tags = nltk.pos_tag(tokens)

    grammar = "NP: {<DT>?<JJ.*>*<NN.*>+}"
    cp = nltk.RegexpParser(grammar)
    result = cp.parse(pos_tags)

    noun_phrases = list()
    for subtree in result.subtrees():
        if subtree.label() == 'NP':
            noun_phrases.append(' '.join(t[0] for t in subtree.leaves()))

    return noun_phrases


def remove_punctuation(text: str) -> str:
    punct = ['|', ':', ';', '@', '(', ')', '[', ']', '{', '}', '^',
             '\'', '\"', '’', '`', '?', '$', '%', '#', '!', '&', '*', '+', ',', '.'
             ]
    for p in punct:
        text = text.replace(p, '')
    return text.strip()