Spaces:
Build error
Build error
File size: 7,046 Bytes
708dec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn
class FPN(nn.Module):
"""
Module that adds FPN on top of a list of feature maps.
The feature maps are currently supposed to be in increasing depth
order, and must be consecutive
"""
def __init__(
self, in_channels_list, out_channels, conv_block, top_blocks=None, drop_block=None, use_spp=False, use_pan=False,
return_swint_feature_before_fusion=False
):
"""
Arguments:
in_channels_list (list[int]): number of channels for each feature map that
will be fed
out_channels (int): number of channels of the FPN representation
top_blocks (nn.Module or None): if provided, an extra operation will
be performed on the output of the last (smallest resolution)
FPN output, and the result will extend the result list
"""
super(FPN, self).__init__()
self.inner_blocks = []
self.layer_blocks = []
self.pan_blocks = [] if use_pan else None
self.spp_block = SPPLayer() if use_spp else None
self.return_swint_feature_before_fusion = return_swint_feature_before_fusion
for idx, in_channels in enumerate(in_channels_list, 1):
inner_block = "fpn_inner{}".format(idx)
layer_block = "fpn_layer{}".format(idx)
if in_channels == 0:
continue
if idx==len(in_channels_list) and use_spp:
in_channels = in_channels*4
inner_block_module = conv_block(in_channels, out_channels, 1)
layer_block_module = conv_block(out_channels, out_channels, 3, 1)
self.add_module(inner_block, inner_block_module)
self.add_module(layer_block, layer_block_module)
self.inner_blocks.append(inner_block)
self.layer_blocks.append(layer_block)
if use_pan:
pan_in_block = "pan_in_layer{}".format(idx)
pan_in_block_module = conv_block(out_channels, out_channels, 3, 2)
self.add_module(pan_in_block, pan_in_block_module)
pan_out_block = "pan_out_layer{}".format(idx)
pan_out_block_module = conv_block(out_channels, out_channels, 3, 1)
self.add_module(pan_out_block, pan_out_block_module)
self.pan_blocks.append([pan_in_block, pan_out_block])
self.top_blocks = top_blocks
self.drop_block = drop_block
def forward(self, x):
"""
Arguments:
x (list[Tensor]): feature maps for each feature level.
Returns:
results (tuple[Tensor]): feature maps after FPN layers.
They are ordered from highest resolution first.
"""
if type(x) is tuple:
# for the case of VL backbone
x, x_text = x[0], x[1]
# print([v.shape for v in x])
swint_feature_c4 = None
if self.return_swint_feature_before_fusion:
# TODO: here we only return last single scale feature map before the backbone fusion, should be more flexible
swint_feature_c4 = x[-2]
if self.spp_block:
last_inner = getattr(self, self.inner_blocks[-1])(self.spp_block(x[-1]))
else:
last_inner = getattr(self, self.inner_blocks[-1])(x[-1])
results = []
results.append(getattr(self, self.layer_blocks[-1])(last_inner))
for feature, inner_block, layer_block in zip(
x[:-1][::-1], self.inner_blocks[:-1][::-1], self.layer_blocks[:-1][::-1]
):
if not inner_block:
continue
inner_lateral = getattr(self, inner_block)(feature)
if inner_lateral.shape[-2:] != last_inner.shape[-2:]:
# TODO: could also give size instead of
inner_top_down = F.interpolate(last_inner, size=inner_lateral.shape[-2:], mode="nearest")
else:
inner_top_down = last_inner
# TODO use size instead of scale to make it robust to different sizes
# inner_top_down = F.upsample(last_inner, size=inner_lateral.shape[-2:],
# mode='bilinear', align_corners=False)
last_inner = inner_lateral + inner_top_down
if self.drop_block and self.training:
results.insert(0, getattr(self, layer_block)(self.drop_block(last_inner)))
else:
results.insert(0, getattr(self, layer_block)(last_inner))
if self.pan_blocks:
pan_results = []
last_outer = results[0]
pan_results.append(last_outer)
for outer_top_down, pan_block in zip(results[1:], self.pan_blocks):
if self.drop_block and self.training:
pan_lateral = getattr(self, pan_block[0])(self.drop_block(last_outer))
else:
pan_lateral = getattr(self, pan_block[0])(last_outer)
last_outer = getattr(self, pan_block[1])(pan_lateral + outer_top_down)
pan_results.append(last_outer)
results = pan_results
if isinstance(self.top_blocks, LastLevelP6P7):
last_results = self.top_blocks(x[-1], results[-1])
results.extend(last_results)
elif isinstance(self.top_blocks, LastLevelMaxPool):
last_results = self.top_blocks(results[-1])
results.extend(last_results)
try:
return tuple(results), x_text, swint_feature_c4
except NameError as e:
return tuple(results)
class LastLevelMaxPool(nn.Module):
def forward(self, x):
return [F.max_pool2d(x, 1, 2, 0)]
class LastLevelP6P7(nn.Module):
"""
This module is used in RetinaNet to generate extra layers, P6 and P7.
"""
def __init__(self, in_channels, out_channels):
super(LastLevelP6P7, self).__init__()
self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)
for module in [self.p6, self.p7]:
nn.init.kaiming_uniform_(module.weight, a=1)
nn.init.constant_(module.bias, 0)
self.use_P5 = in_channels == out_channels
def forward(self, c5, p5):
x = p5 if self.use_P5 else c5
p6 = self.p6(x)
p7 = self.p7(F.relu(p6))
return [p6, p7]
class SPPLayer(nn.Module):
def __init__(self):
super(SPPLayer, self).__init__()
def forward(self, x):
x_1 = x
x_2 = F.max_pool2d(x, 5, stride=1, padding=2)
x_3 = F.max_pool2d(x, 9, stride=1, padding=4)
x_4 = F.max_pool2d(x, 13, stride=1, padding=6)
out = torch.cat((x_1, x_2, x_3, x_4),dim=1)
return out |