File size: 8,718 Bytes
708dec4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import math
import torch
import torch.nn.functional as F
from torch import nn

from maskrcnn_benchmark.modeling import registry
from maskrcnn_benchmark.layers import Scale, DFConv2d
from .loss import make_fcos_loss_evaluator
from .anchor_generator import make_center_anchor_generator
from .inference import make_fcos_postprocessor


@registry.RPN_HEADS.register("FCOSHead")
class FCOSHead(torch.nn.Module):
    def __init__(self, cfg):

        super(FCOSHead, self).__init__()
        # TODO: Implement the sigmoid version first.
        num_classes = cfg.MODEL.FCOS.NUM_CLASSES - 1
        in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS
        use_gn = cfg.MODEL.FCOS.USE_GN
        use_bn = cfg.MODEL.FCOS.USE_BN
        use_dcn_in_tower = cfg.MODEL.FCOS.USE_DFCONV
        self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES
        self.norm_reg_targets = cfg.MODEL.FCOS.NORM_REG_TARGETS
        self.centerness_on_reg = cfg.MODEL.FCOS.CENTERNESS_ON_REG

        cls_tower = []
        bbox_tower = []
        for i in range(cfg.MODEL.FCOS.NUM_CONVS):
            if use_dcn_in_tower and \
                    i == cfg.MODEL.FCOS.NUM_CONVS - 1:
                conv_func = DFConv2d
            else:
                conv_func = nn.Conv2d

            cls_tower.append(
                conv_func(
                    in_channels,
                    in_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=True
                )
            )
            if use_gn:
                cls_tower.append(nn.GroupNorm(32, in_channels))
            if use_bn:
                cls_tower.append(nn.BatchNorm2d(in_channels))
            cls_tower.append(nn.ReLU())

            bbox_tower.append(
                conv_func(
                    in_channels,
                    in_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=True
                )
            )
            if use_gn:
                bbox_tower.append(nn.GroupNorm(32, in_channels))
            if use_bn:
                bbox_tower.append(nn.BatchNorm2d(in_channels))
            bbox_tower.append(nn.ReLU())

        self.add_module('cls_tower', nn.Sequential(*cls_tower))
        self.add_module('bbox_tower', nn.Sequential(*bbox_tower))
        self.cls_logits = nn.Conv2d(
            in_channels, num_classes, kernel_size=3, stride=1,
            padding=1
        )
        self.bbox_pred = nn.Conv2d(
            in_channels, 4, kernel_size=3, stride=1,
            padding=1
        )
        self.centerness = nn.Conv2d(
            in_channels, 1, kernel_size=3, stride=1,
            padding=1
        )

        # initialization
        for modules in [self.cls_tower, self.bbox_tower,
                        self.cls_logits, self.bbox_pred,
                        self.centerness]:
            for l in modules.modules():
                if isinstance(l, nn.Conv2d):
                    torch.nn.init.normal_(l.weight, std=0.01)
                    torch.nn.init.constant_(l.bias, 0)

        # initialize the bias for focal loss
        prior_prob = cfg.MODEL.FCOS.PRIOR_PROB
        bias_value = -math.log((1 - prior_prob) / prior_prob)
        torch.nn.init.constant_(self.cls_logits.bias, bias_value)

        self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)])

    def forward(self, x):
        logits = []
        bbox_reg = []
        centerness = []
        for l, feature in enumerate(x):
            cls_tower = self.cls_tower(feature)
            box_tower = self.bbox_tower(feature)

            logits.append(self.cls_logits(cls_tower))
            if self.centerness_on_reg:
                centerness.append(self.centerness(box_tower))
            else:
                centerness.append(self.centerness(cls_tower))

            bbox_pred = self.scales[l](self.bbox_pred(box_tower))
            if self.norm_reg_targets:
                bbox_pred = F.relu(bbox_pred)
                if self.training:
                    bbox_reg.append(bbox_pred)
                else:
                    bbox_reg.append(bbox_pred * self.fpn_strides[l])
            else:
                bbox_reg.append(torch.exp(bbox_pred))
        return logits, bbox_reg, centerness


class FCOSModule(torch.nn.Module):
    """

    Module for FCOS computation. Takes feature maps from the backbone and

    FCOS outputs and losses. Only Test on FPN now.

    """

    def __init__(self, cfg):
        super(FCOSModule, self).__init__()

        head = FCOSHead(cfg)

        box_selector_train = make_fcos_postprocessor(cfg, is_train=True)
        box_selector_test = make_fcos_postprocessor(cfg, is_train=False)

        loss_evaluator = make_fcos_loss_evaluator(cfg)

        self.cfg = cfg
        self.head = head
        self.box_selector_train = box_selector_train
        self.box_selector_test = box_selector_test
        self.loss_evaluator = loss_evaluator
        self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES
        if not cfg.MODEL.RPN_ONLY:
            self.anchor_generator = make_center_anchor_generator(cfg)


    def forward(self, images, features, targets=None):
        """

        Arguments:

            images (ImageList): images for which we want to compute the predictions

            features (list[Tensor]): features computed from the images that are

                used for computing the predictions. Each tensor in the list

                correspond to different feature levels

            targets (list[BoxList): ground-truth boxes present in the image (optional)



        Returns:

            boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per

                image.

            losses (dict[Tensor]): the losses for the model during training. During

                testing, it is an empty dict.

        """
        box_cls, box_regression, centerness = self.head(features)
        locations = self.compute_locations(features)
        if self.training and targets is not None:
            return self._forward_train(
                locations, box_cls, box_regression,
                centerness, targets, images.image_sizes
            )
        else:
            return self._forward_test(
                locations, box_cls, box_regression,
                centerness, images.image_sizes
            )

    def _forward_train(self, locations, box_cls, box_regression, centerness, targets, image_sizes=None):
        loss_box_cls, loss_box_reg, loss_centerness = self.loss_evaluator(
            locations, box_cls, box_regression, centerness, targets
        )
        losses = {
            "loss_cls": loss_box_cls,
            "loss_reg": loss_box_reg,
            "loss_centerness": loss_centerness
        }
        if self.cfg.MODEL.RPN_ONLY:
            return None, losses
        else:
            boxes = self.box_selector_train(
                locations, box_cls, box_regression,
                centerness, image_sizes
            )
            proposals = self.anchor_generator(boxes, image_sizes, centerness)
            return proposals, losses

    def _forward_test(self, locations, box_cls, box_regression, centerness, image_sizes):
        boxes = self.box_selector_test(
            locations, box_cls, box_regression,
            centerness, image_sizes
        )
        if not self.cfg.MODEL.RPN_ONLY:
            boxes = self.anchor_generator(boxes, image_sizes, centerness)
        return boxes, {}

    def compute_locations(self, features):
        locations = []
        for level, feature in enumerate(features):
            h, w = feature.size()[-2:]
            locations_per_level = self.compute_locations_per_level(
                h, w, self.fpn_strides[level],
                feature.device
            )
            locations.append(locations_per_level)
        return locations

    def compute_locations_per_level(self, h, w, stride, device):
        shifts_x = torch.arange(
            0, w * stride, step=stride,
            dtype=torch.float32, device=device
        )
        shifts_y = torch.arange(
            0, h * stride, step=stride,
            dtype=torch.float32, device=device
        )
        shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
        shift_x = shift_x.reshape(-1)
        shift_y = shift_y.reshape(-1)
        locations = torch.stack((shift_x, shift_y), dim=1) + stride // 2
        return locations