haotiz's picture
initial commit
708dec4
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import copy
import datetime
import json
import os
from collections import OrderedDict, defaultdict
import numpy as np
import pycocotools.mask as mask_util
import torch
# import torch._six
import maskrcnn_benchmark.utils.mdetr_dist as dist
from maskrcnn_benchmark.utils.mdetr_dist import all_gather
from .lvis import LVIS
def merge(img_ids, eval_imgs):
all_img_ids = all_gather(img_ids)
all_eval_imgs = all_gather(eval_imgs)
merged_img_ids = []
for p in all_img_ids:
merged_img_ids.extend(p)
merged_eval_imgs = []
for p in all_eval_imgs:
merged_eval_imgs.append(p)
merged_img_ids = np.array(merged_img_ids)
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
# keep only unique (and in sorted order) images
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
merged_eval_imgs = merged_eval_imgs[..., idx]
return merged_img_ids, merged_eval_imgs
#################################################################
# From LVIS, with following changes:
# * fixed LVISEval constructor to accept empty dt
# * Removed logger
# * LVIS results supports numpy inputs
#################################################################
class Params:
def __init__(self, iou_type):
"""Params for LVIS evaluation API."""
self.img_ids = []
self.cat_ids = []
# np.arange causes trouble. the data point on arange is slightly
# larger than the true value
self.iou_thrs = np.linspace(0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True)
self.rec_thrs = np.linspace(0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True)
self.max_dets = 300
self.area_rng = [
[0 ** 2, 1e5 ** 2],
[0 ** 2, 32 ** 2],
[32 ** 2, 96 ** 2],
[96 ** 2, 1e5 ** 2],
]
self.area_rng_lbl = ["all", "small", "medium", "large"]
self.use_cats = 1
# We bin categories in three bins based how many images of the training
# set the category is present in.
# r: Rare : < 10
# c: Common : >= 10 and < 100
# f: Frequent: >= 100
self.img_count_lbl = ["r", "c", "f"]
self.iou_type = iou_type
class LVISResults(LVIS):
def __init__(self, lvis_gt, results, max_dets=300):
"""Constructor for LVIS results.
Args:
lvis_gt (LVIS class instance, or str containing path of
annotation file)
results (str containing path of result file or a list of dicts)
max_dets (int): max number of detections per image. The official
value of max_dets for LVIS is 300.
"""
super(LVISResults, self).__init__()
assert isinstance(lvis_gt, LVIS)
self.dataset["images"] = [img for img in lvis_gt.dataset["images"]]
if isinstance(results, str):
result_anns = self._load_json(results)
elif type(results) == np.ndarray:
result_anns = self.loadNumpyAnnotations(results)
else:
result_anns = results
if max_dets >= 0:
result_anns = self.limit_dets_per_image(result_anns, max_dets)
if len(result_anns) > 0 and "bbox" in result_anns[0]:
self.dataset["categories"] = copy.deepcopy(lvis_gt.dataset["categories"])
for id, ann in enumerate(result_anns):
x1, y1, w, h = ann["bbox"]
x2 = x1 + w
y2 = y1 + h
if "segmentation" not in ann:
ann["segmentation"] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
ann["area"] = w * h
ann["id"] = id + 1
elif len(result_anns) > 0 and "segmentation" in result_anns[0]:
self.dataset["categories"] = copy.deepcopy(lvis_gt.dataset["categories"])
for id, ann in enumerate(result_anns):
# Only support compressed RLE format as segmentation results
ann["area"] = mask_util.area(ann["segmentation"])
if "bbox" not in ann:
ann["bbox"] = mask_util.toBbox(ann["segmentation"])
ann["id"] = id + 1
self.dataset["annotations"] = result_anns
self._create_index()
# #FIXME: disabling this check for now
# img_ids_in_result = [ann["image_id"] for ann in result_anns]
# assert set(img_ids_in_result) == (
# set(img_ids_in_result) & set(self.get_img_ids())
# ), "Results do not correspond to current LVIS set."
def limit_dets_per_image(self, anns, max_dets):
img_ann = defaultdict(list)
for ann in anns:
img_ann[ann["image_id"]].append(ann)
for img_id, _anns in img_ann.items():
if len(_anns) <= max_dets:
continue
_anns = sorted(_anns, key=lambda ann: ann["score"], reverse=True)
img_ann[img_id] = _anns[:max_dets]
return [ann for anns in img_ann.values() for ann in anns]
def get_top_results(self, img_id, score_thrs):
ann_ids = self.get_ann_ids(img_ids=[img_id])
anns = self.load_anns(ann_ids)
return list(filter(lambda ann: ann["score"] > score_thrs, anns))
class LVISEval:
def __init__(self, lvis_gt, lvis_dt=None, iou_type="segm"):
"""Constructor for LVISEval.
Args:
lvis_gt (LVIS class instance, or str containing path of annotation file)
lvis_dt (LVISResult class instance, or str containing path of result file,
or list of dict)
iou_type (str): segm or bbox evaluation
"""
if iou_type not in ["bbox", "segm"]:
raise ValueError("iou_type: {} is not supported.".format(iou_type))
if isinstance(lvis_gt, LVIS):
self.lvis_gt = lvis_gt
elif isinstance(lvis_gt, str):
self.lvis_gt = LVIS(lvis_gt)
else:
raise TypeError("Unsupported type {} of lvis_gt.".format(lvis_gt))
if isinstance(lvis_dt, LVISResults):
self.lvis_dt = lvis_dt
elif isinstance(lvis_dt, (str, list)):
self.lvis_dt = LVISResults(self.lvis_gt, lvis_dt)
elif lvis_dt is not None:
raise TypeError("Unsupported type {} of lvis_dt.".format(lvis_dt))
# per-image per-category evaluation results
self.eval_imgs = defaultdict(list)
self.eval = {} # accumulated evaluation results
self._gts = defaultdict(list) # gt for evaluation
self._dts = defaultdict(list) # dt for evaluation
self.params = Params(iou_type=iou_type) # parameters
self.results = OrderedDict()
self.stats = []
self.ious = {} # ious between all gts and dts
self.params.img_ids = sorted(self.lvis_gt.get_img_ids())
self.params.cat_ids = sorted(self.lvis_gt.get_cat_ids())
def _to_mask(self, anns, lvis):
for ann in anns:
rle = lvis.ann_to_rle(ann)
ann["segmentation"] = rle
def _prepare(self):
"""Prepare self._gts and self._dts for evaluation based on params."""
cat_ids = self.params.cat_ids if self.params.cat_ids else None
gts = self.lvis_gt.load_anns(self.lvis_gt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids))
dts = self.lvis_dt.load_anns(self.lvis_dt.get_ann_ids(img_ids=self.params.img_ids, cat_ids=cat_ids))
# convert ground truth to mask if iou_type == 'segm'
if self.params.iou_type == "segm":
self._to_mask(gts, self.lvis_gt)
self._to_mask(dts, self.lvis_dt)
# set ignore flag
for gt in gts:
if "ignore" not in gt:
gt["ignore"] = 0
for gt in gts:
self._gts[gt["image_id"], gt["category_id"]].append(gt)
# For federated dataset evaluation we will filter out all dt for an
# image which belong to categories not present in gt and not present in
# the negative list for an image. In other words detector is not penalized
# for categories about which we don't have gt information about their
# presence or absence in an image.
img_data = self.lvis_gt.load_imgs(ids=self.params.img_ids)
# per image map of categories not present in image
img_nl = {d["id"]: d["neg_category_ids"] for d in img_data}
# per image list of categories present in image
img_pl = defaultdict(set)
for ann in gts:
img_pl[ann["image_id"]].add(ann["category_id"])
# per image map of categoires which have missing gt. For these
# categories we don't penalize the detector for flase positives.
self.img_nel = {d["id"]: d["not_exhaustive_category_ids"] for d in img_data}
for dt in dts:
img_id, cat_id = dt["image_id"], dt["category_id"]
if cat_id not in img_nl[img_id] and cat_id not in img_pl[img_id]:
continue
self._dts[img_id, cat_id].append(dt)
self.freq_groups = self._prepare_freq_group()
def _prepare_freq_group(self):
freq_groups = [[] for _ in self.params.img_count_lbl]
cat_data = self.lvis_gt.load_cats(self.params.cat_ids)
for idx, _cat_data in enumerate(cat_data):
frequency = _cat_data["frequency"]
freq_groups[self.params.img_count_lbl.index(frequency)].append(idx)
return freq_groups
def evaluate(self):
"""
Run per image evaluation on given images and store results
(a list of dict) in self.eval_imgs.
"""
self.params.img_ids = list(np.unique(self.params.img_ids))
if self.params.use_cats:
cat_ids = self.params.cat_ids
else:
cat_ids = [-1]
self._prepare()
self.ious = {
(img_id, cat_id): self.compute_iou(img_id, cat_id) for img_id in self.params.img_ids for cat_id in cat_ids
}
# loop through images, area range, max detection number
self.eval_imgs = [
self.evaluate_img(img_id, cat_id, area_rng)
for cat_id in cat_ids
for area_rng in self.params.area_rng
for img_id in self.params.img_ids
]
def _get_gt_dt(self, img_id, cat_id):
"""Create gt, dt which are list of anns/dets. If use_cats is true
only anns/dets corresponding to tuple (img_id, cat_id) will be
used. Else, all anns/dets in image are used and cat_id is not used.
"""
if self.params.use_cats:
gt = self._gts[img_id, cat_id]
dt = self._dts[img_id, cat_id]
else:
gt = [_ann for _cat_id in self.params.cat_ids for _ann in self._gts[img_id, cat_id]]
dt = [_ann for _cat_id in self.params.cat_ids for _ann in self._dts[img_id, cat_id]]
return gt, dt
def compute_iou(self, img_id, cat_id):
gt, dt = self._get_gt_dt(img_id, cat_id)
if len(gt) == 0 and len(dt) == 0:
return []
# Sort detections in decreasing order of score.
idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in idx]
iscrowd = [int(False)] * len(gt)
if self.params.iou_type == "segm":
ann_type = "segmentation"
elif self.params.iou_type == "bbox":
ann_type = "bbox"
else:
raise ValueError("Unknown iou_type for iou computation.")
gt = [g[ann_type] for g in gt]
dt = [d[ann_type] for d in dt]
# compute iou between each dt and gt region
# will return array of shape len(dt), len(gt)
ious = mask_util.iou(dt, gt, iscrowd)
return ious
def evaluate_img(self, img_id, cat_id, area_rng):
"""Perform evaluation for single category and image."""
gt, dt = self._get_gt_dt(img_id, cat_id)
if len(gt) == 0 and len(dt) == 0:
return None
# Add another filed _ignore to only consider anns based on area range.
for g in gt:
if g["ignore"] or (g["area"] < area_rng[0] or g["area"] > area_rng[1]):
g["_ignore"] = 1
else:
g["_ignore"] = 0
# Sort gt ignore last
gt_idx = np.argsort([g["_ignore"] for g in gt], kind="mergesort")
gt = [gt[i] for i in gt_idx]
# Sort dt highest score first
dt_idx = np.argsort([-d["score"] for d in dt], kind="mergesort")
dt = [dt[i] for i in dt_idx]
# load computed ious
ious = self.ious[img_id, cat_id][:, gt_idx] if len(self.ious[img_id, cat_id]) > 0 else self.ious[img_id, cat_id]
num_thrs = len(self.params.iou_thrs)
num_gt = len(gt)
num_dt = len(dt)
# Array to store the "id" of the matched dt/gt
gt_m = np.zeros((num_thrs, num_gt))
dt_m = np.zeros((num_thrs, num_dt))
gt_ig = np.array([g["_ignore"] for g in gt])
dt_ig = np.zeros((num_thrs, num_dt))
for iou_thr_idx, iou_thr in enumerate(self.params.iou_thrs):
if len(ious) == 0:
break
for dt_idx, _dt in enumerate(dt):
iou = min([iou_thr, 1 - 1e-10])
# information about best match so far (m=-1 -> unmatched)
# store the gt_idx which matched for _dt
m = -1
for gt_idx, _ in enumerate(gt):
# if this gt already matched continue
if gt_m[iou_thr_idx, gt_idx] > 0:
continue
# if _dt matched to reg gt, and on ignore gt, stop
if m > -1 and gt_ig[m] == 0 and gt_ig[gt_idx] == 1:
break
# continue to next gt unless better match made
if ious[dt_idx, gt_idx] < iou:
continue
# if match successful and best so far, store appropriately
iou = ious[dt_idx, gt_idx]
m = gt_idx
# No match found for _dt, go to next _dt
if m == -1:
continue
# if gt to ignore for some reason update dt_ig.
# Should not be used in evaluation.
dt_ig[iou_thr_idx, dt_idx] = gt_ig[m]
# _dt match found, update gt_m, and dt_m with "id"
dt_m[iou_thr_idx, dt_idx] = gt[m]["id"]
gt_m[iou_thr_idx, m] = _dt["id"]
# For LVIS we will ignore any unmatched detection if that category was
# not exhaustively annotated in gt.
dt_ig_mask = [
d["area"] < area_rng[0] or d["area"] > area_rng[1] or d["category_id"] in self.img_nel[d["image_id"]]
for d in dt
]
dt_ig_mask = np.array(dt_ig_mask).reshape((1, num_dt)) # 1 X num_dt
dt_ig_mask = np.repeat(dt_ig_mask, num_thrs, 0) # num_thrs X num_dt
# Based on dt_ig_mask ignore any unmatched detection by updating dt_ig
dt_ig = np.logical_or(dt_ig, np.logical_and(dt_m == 0, dt_ig_mask))
# store results for given image and category
return {
"image_id": img_id,
"category_id": cat_id,
"area_rng": area_rng,
"dt_ids": [d["id"] for d in dt],
"gt_ids": [g["id"] for g in gt],
"dt_matches": dt_m,
"gt_matches": gt_m,
"dt_scores": [d["score"] for d in dt],
"gt_ignore": gt_ig,
"dt_ignore": dt_ig,
}
def accumulate(self):
"""Accumulate per image evaluation results and store the result in
self.eval.
"""
if not self.eval_imgs:
print("Warning: Please run evaluate first.")
if self.params.use_cats:
cat_ids = self.params.cat_ids
else:
cat_ids = [-1]
num_thrs = len(self.params.iou_thrs)
num_recalls = len(self.params.rec_thrs)
num_cats = len(cat_ids)
num_area_rngs = len(self.params.area_rng)
num_imgs = len(self.params.img_ids)
# -1 for absent categories
precision = -np.ones((num_thrs, num_recalls, num_cats, num_area_rngs))
recall = -np.ones((num_thrs, num_cats, num_area_rngs))
# Initialize dt_pointers
dt_pointers = {}
for cat_idx in range(num_cats):
dt_pointers[cat_idx] = {}
for area_idx in range(num_area_rngs):
dt_pointers[cat_idx][area_idx] = {}
# Per category evaluation
for cat_idx in range(num_cats):
Nk = cat_idx * num_area_rngs * num_imgs
for area_idx in range(num_area_rngs):
Na = area_idx * num_imgs
E = [self.eval_imgs[Nk + Na + img_idx] for img_idx in range(num_imgs)]
# Remove elements which are None
E = [e for e in E if e is not None]
if len(E) == 0:
continue
# Append all scores: shape (N,)
dt_scores = np.concatenate([e["dt_scores"] for e in E], axis=0)
dt_ids = np.concatenate([e["dt_ids"] for e in E], axis=0)
dt_idx = np.argsort(-dt_scores, kind="mergesort")
dt_scores = dt_scores[dt_idx]
dt_ids = dt_ids[dt_idx]
dt_m = np.concatenate([e["dt_matches"] for e in E], axis=1)[:, dt_idx]
dt_ig = np.concatenate([e["dt_ignore"] for e in E], axis=1)[:, dt_idx]
gt_ig = np.concatenate([e["gt_ignore"] for e in E])
# num gt anns to consider
num_gt = np.count_nonzero(gt_ig == 0)
if num_gt == 0:
continue
tps = np.logical_and(dt_m, np.logical_not(dt_ig))
fps = np.logical_and(np.logical_not(dt_m), np.logical_not(dt_ig))
tp_sum = np.cumsum(tps, axis=1).astype(dtype=np.float)
fp_sum = np.cumsum(fps, axis=1).astype(dtype=np.float)
dt_pointers[cat_idx][area_idx] = {
"dt_ids": dt_ids,
"tps": tps,
"fps": fps,
}
for iou_thr_idx, (tp, fp) in enumerate(zip(tp_sum, fp_sum)):
tp = np.array(tp)
fp = np.array(fp)
num_tp = len(tp)
rc = tp / num_gt
if num_tp:
recall[iou_thr_idx, cat_idx, area_idx] = rc[-1]
else:
recall[iou_thr_idx, cat_idx, area_idx] = 0
# np.spacing(1) ~= eps
pr = tp / (fp + tp + np.spacing(1))
pr = pr.tolist()
# Replace each precision value with the maximum precision
# value to the right of that recall level. This ensures
# that the calculated AP value will be less suspectable
# to small variations in the ranking.
for i in range(num_tp - 1, 0, -1):
if pr[i] > pr[i - 1]:
pr[i - 1] = pr[i]
rec_thrs_insert_idx = np.searchsorted(rc, self.params.rec_thrs, side="left")
pr_at_recall = [0.0] * num_recalls
try:
for _idx, pr_idx in enumerate(rec_thrs_insert_idx):
pr_at_recall[_idx] = pr[pr_idx]
except Exception:
pass
precision[iou_thr_idx, :, cat_idx, area_idx] = np.array(pr_at_recall)
self.eval = {
"params": self.params,
"counts": [num_thrs, num_recalls, num_cats, num_area_rngs],
"date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"precision": precision,
"recall": recall,
"dt_pointers": dt_pointers,
}
def _summarize(self, summary_type, iou_thr=None, area_rng="all", freq_group_idx=None):
aidx = [idx for idx, _area_rng in enumerate(self.params.area_rng_lbl) if _area_rng == area_rng]
if summary_type == "ap":
s = self.eval["precision"]
if iou_thr is not None:
tidx = np.where(iou_thr == self.params.iou_thrs)[0]
s = s[tidx]
if freq_group_idx is not None:
s = s[:, :, self.freq_groups[freq_group_idx], aidx]
else:
s = s[:, :, :, aidx]
else:
s = self.eval["recall"]
if iou_thr is not None:
tidx = np.where(iou_thr == self.params.iou_thrs)[0]
s = s[tidx]
s = s[:, :, aidx]
if len(s[s > -1]) == 0:
mean_s = -1
else:
mean_s = np.mean(s[s > -1])
return mean_s
def summarize(self):
"""Compute and display summary metrics for evaluation results."""
if not self.eval:
raise RuntimeError("Please run accumulate() first.")
max_dets = self.params.max_dets
self.results["AP"] = self._summarize("ap")
self.results["AP50"] = self._summarize("ap", iou_thr=0.50)
self.results["AP75"] = self._summarize("ap", iou_thr=0.75)
self.results["APs"] = self._summarize("ap", area_rng="small")
self.results["APm"] = self._summarize("ap", area_rng="medium")
self.results["APl"] = self._summarize("ap", area_rng="large")
self.results["APr"] = self._summarize("ap", freq_group_idx=0)
self.results["APc"] = self._summarize("ap", freq_group_idx=1)
self.results["APf"] = self._summarize("ap", freq_group_idx=2)
self.stats = np.zeros((9,))
self.stats[0] = self._summarize("ap")
self.stats[1] = self._summarize("ap", iou_thr=0.50)
self.stats[2] = self._summarize("ap", iou_thr=0.75)
self.stats[3] = self._summarize("ap", area_rng="small")
self.stats[4] = self._summarize("ap", area_rng="medium")
self.stats[5] = self._summarize("ap", area_rng="large")
self.stats[6] = self._summarize("ap", freq_group_idx=0)
self.stats[7] = self._summarize("ap", freq_group_idx=1)
self.stats[8] = self._summarize("ap", freq_group_idx=2)
key = "AR@{}".format(max_dets)
self.results[key] = self._summarize("ar")
for area_rng in ["small", "medium", "large"]:
key = "AR{}@{}".format(area_rng[0], max_dets)
self.results[key] = self._summarize("ar", area_rng=area_rng)
_returned = self.print_results()
return _returned
def run(self):
"""Wrapper function which calculates the results."""
self.evaluate()
self.accumulate()
self.summarize()
def print_results(self):
template = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} catIds={:>3s}] = {:0.3f}"
out_strings = []
for key, value in self.results.items():
max_dets = self.params.max_dets
if "AP" in key:
title = "Average Precision"
_type = "(AP)"
else:
title = "Average Recall"
_type = "(AR)"
if len(key) > 2 and key[2].isdigit():
iou_thr = float(key[2:]) / 100
iou = "{:0.2f}".format(iou_thr)
else:
iou = "{:0.2f}:{:0.2f}".format(self.params.iou_thrs[0], self.params.iou_thrs[-1])
if len(key) > 2 and key[2] in ["r", "c", "f"]:
cat_group_name = key[2]
else:
cat_group_name = "all"
if len(key) > 2 and key[2] in ["s", "m", "l"]:
area_rng = key[2]
else:
area_rng = "all"
print(template.format(title, _type, iou, area_rng, max_dets, cat_group_name, value))
out_strings.append(template.format(title, _type, iou, area_rng, max_dets, cat_group_name, value))
return out_strings
def get_results(self):
if not self.results:
print("Warning: results is empty. Call run().")
return self.results
#################################################################
# end of straight copy from lvis, just fixing constructor
#################################################################
class LvisEvaluator(object):
def __init__(self, lvis_gt, iou_types):
assert isinstance(iou_types, (list, tuple))
# lvis_gt = copy.deepcopy(lvis_gt)
self.lvis_gt = lvis_gt
self.iou_types = iou_types
self.coco_eval = {}
for iou_type in iou_types:
self.coco_eval[iou_type] = LVISEval(lvis_gt, iou_type=iou_type)
self.img_ids = []
self.eval_imgs = {k: [] for k in iou_types}
def update(self, predictions):
img_ids = list(np.unique(list(predictions.keys())))
self.img_ids.extend(img_ids)
for iou_type in self.iou_types:
results = self.prepare(predictions, iou_type)
lvis_dt = LVISResults(self.lvis_gt, results)
lvis_eval = self.coco_eval[iou_type]
lvis_eval.lvis_dt = lvis_dt
lvis_eval.params.img_ids = list(img_ids)
lvis_eval.evaluate()
eval_imgs = lvis_eval.eval_imgs
eval_imgs = np.asarray(eval_imgs).reshape(
len(lvis_eval.params.cat_ids), len(lvis_eval.params.area_rng), len(lvis_eval.params.img_ids)
)
self.eval_imgs[iou_type].append(eval_imgs)
def synchronize_between_processes(self):
for iou_type in self.iou_types:
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
create_common_lvis_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
def accumulate(self):
for lvis_eval in self.coco_eval.values():
lvis_eval.accumulate()
def summarize(self):
for iou_type, lvis_eval in self.coco_eval.items():
print("IoU metric: {}".format(iou_type))
lvis_eval.summarize()
def prepare(self, predictions, iou_type):
if iou_type == "bbox":
return self.prepare_for_lvis_detection(predictions)
elif iou_type == "segm":
return self.prepare_for_lvis_segmentation(predictions)
elif iou_type == "keypoints":
return self.prepare_for_lvis_keypoint(predictions)
else:
raise ValueError("Unknown iou type {}".format(iou_type))
def prepare_for_lvis_detection(self, predictions):
lvis_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
lvis_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
return lvis_results
def prepare_for_lvis_segmentation(self, predictions):
lvis_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
scores = prediction["scores"]
labels = prediction["labels"]
masks = prediction["masks"]
masks = masks > 0.5
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
rles = [
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0] for mask in masks
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
lvis_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"segmentation": rle,
"score": scores[k],
}
for k, rle in enumerate(rles)
]
)
return lvis_results
def _merge_lists(listA, listB, maxN, key):
result = []
indA, indB = 0, 0
while (indA < len(listA) or indB < len(listB)) and len(result) < maxN:
if (indB < len(listB)) and (indA >= len(listA) or key(listA[indA]) < key(listB[indB])):
result.append(listB[indB])
indB += 1
else:
result.append(listA[indA])
indA += 1
return result
# Adapted from https://github.com/achalddave/large-vocab-devil/blob/9aaddc15b00e6e0d370b16743233e40d973cd53f/scripts/evaluate_ap_fixed.py
class LvisEvaluatorFixedAP(object):
def __init__(self, gt: LVIS, topk=10000, fixed_ap=True):
self.results = []
self.by_cat = {}
self.gt = gt
self.topk = topk
self.fixed_ap = fixed_ap
def update(self, predictions):
cur_results = self.prepare(predictions)
if self.fixed_ap:
by_cat = defaultdict(list)
for ann in cur_results:
by_cat[ann["category_id"]].append(ann)
for cat, cat_anns in by_cat.items():
if cat not in self.by_cat:
self.by_cat[cat] = []
cur = sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk]
self.by_cat[cat] = _merge_lists(self.by_cat[cat], cur, self.topk, key=lambda x: x["score"])
else:
by_id = defaultdict(list)
for ann in cur_results:
by_id[ann["image_id"]].append(ann)
for id_anns in by_id.values():
self.results.extend(sorted(id_anns, key=lambda x: x["score"], reverse=True)[:300])
def synchronize_between_processes(self):
if self.fixed_ap:
all_cats = dist.all_gather(self.by_cat)
self.by_cat = defaultdict(list)
for cats in all_cats:
for cat, cat_anns in cats.items():
self.by_cat[cat].extend(cat_anns)
else:
self.results = sum(dist.all_gather(self.results), [])
def prepare(self, predictions):
lvis_results = []
for original_id, prediction in predictions:
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
lvis_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
return lvis_results
def summarize(self):
if not dist.is_main_process():
return
if self.fixed_ap:
return self._summarize_fixed()
else:
return self._summarize_standard()
def _summarize_standard(self):
results = LVISResults(self.gt, self.results)
lvis_eval = LVISEval(self.gt, results, iou_type="bbox")
lvis_eval.run()
lvis_eval.print_results()
def _summarize_fixed(self):
results = []
missing_dets_cats = set()
for cat, cat_anns in self.by_cat.items():
if len(cat_anns) < self.topk:
missing_dets_cats.add(cat)
results.extend(sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk])
if missing_dets_cats:
print(
f"\n===\n"
f"{len(missing_dets_cats)} classes had less than {self.topk} detections!\n"
f"Outputting {self.topk} detections for each class will improve AP further.\n"
f"If using detectron2, please use the lvdevil/infer_topk.py script to "
f"output a results file with {self.topk} detections for each class.\n"
f"==="
)
results = LVISResults(self.gt, results, max_dets=-1)
lvis_eval = LVISEval(self.gt, results, iou_type="bbox")
params = lvis_eval.params
params.max_dets = -1 # No limit on detections per image.
lvis_eval.run()
scores = lvis_eval.print_results()
metrics = {k: v for k, v in lvis_eval.results.items() if k.startswith("AP")}
print("copypaste: %s,%s", ",".join(map(str, metrics.keys())), "path")
return scores
class LvisDumper(object):
def __init__(self, topk=10000, fixed_ap=True, out_path="lvis_eval"):
self.results = []
self.by_cat = {}
self.topk = topk
self.fixed_ap = fixed_ap
self.out_path = out_path
if dist.is_main_process():
if not os.path.exists(self.out_path):
os.mkdir(self.out_path)
def update(self, predictions):
cur_results = self.prepare(predictions)
if self.fixed_ap:
by_cat = defaultdict(list)
for ann in cur_results:
by_cat[ann["category_id"]].append(ann)
for cat, cat_anns in by_cat.items():
if cat not in self.by_cat:
self.by_cat[cat] = []
cur = sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk]
self.by_cat[cat] = _merge_lists(self.by_cat[cat], cur, self.topk, key=lambda x: x["score"])
else:
by_id = defaultdict(list)
for ann in cur_results:
by_id[ann["image_id"]].append(ann)
for id_anns in by_id.values():
self.results.extend(sorted(id_anns, key=lambda x: x["score"], reverse=True)[:300])
def synchronize_between_processes(self):
if self.fixed_ap:
all_cats = dist.all_gather(self.by_cat)
self.by_cat = defaultdict(list)
for cats in all_cats:
for cat, cat_anns in cats.items():
self.by_cat[cat].extend(cat_anns)
else:
self.results = sum(dist.all_gather(self.results), [])
def prepare(self, predictions):
lvis_results = []
for original_id, prediction in predictions:
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
lvis_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
return lvis_results
def summarize(self):
if not dist.is_main_process():
return
if self.fixed_ap:
self._summarize_fixed()
else:
self._summarize_standard()
def _summarize_standard(self):
json_path = os.path.join(self.out_path, "results.json")
print("dumping to ", json_path)
with open(json_path, "w") as f:
json.dump(self.results, f)
print("dumped")
def _summarize_fixed(self):
results = []
missing_dets_cats = set()
for cat, cat_anns in self.by_cat.items():
if len(cat_anns) < self.topk:
missing_dets_cats.add(cat)
results.extend(sorted(cat_anns, key=lambda x: x["score"], reverse=True)[: self.topk])
if missing_dets_cats:
print(
f"\n===\n"
f"{len(missing_dets_cats)} classes had less than {self.topk} detections!\n"
f"Outputting {self.topk} detections for each class will improve AP further.\n"
f"If using detectron2, please use the lvdevil/infer_topk.py script to "
f"output a results file with {self.topk} detections for each class.\n"
f"==="
)
json_path = os.path.join(self.out_path, "results.json")
print("dumping to ", json_path)
with open(json_path, "w") as f:
json.dump(results, f)
print("dumped")
def convert_to_xywh(boxes):
xmin, ymin, xmax, ymax = boxes.unbind(1)
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
def create_common_lvis_eval(lvis_eval, img_ids, eval_imgs):
img_ids, eval_imgs = merge(img_ids, eval_imgs)
img_ids = list(img_ids)
eval_imgs = list(eval_imgs.flatten())
lvis_eval.eval_imgs = eval_imgs
lvis_eval.params.img_ids = img_ids
def lvis_evaluation():
pass