haotiz's picture
initial commit
708dec4
import logging
import os
import os.path
import math
from PIL import Image, ImageDraw
import random
import numpy as np
import torch
import torchvision
import torch.utils.data as data
from pycocotools import mask as coco_mask
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask
from maskrcnn_benchmark.data.datasets.coco import has_valid_annotation
from .od_to_grounding import convert_od_to_grounding_simple, check_for_positive_overflow, sanity_check_target_after_processing, convert_object_detection_to_grounding_optimized_for_od
import pdb
import json
class CocoGrounding(torchvision.datasets.CocoDetection):
def __init__(self,
img_folder,
ann_file,
transforms,
return_masks,
return_tokens,
is_train=False,
tokenizer=None,
disable_shuffle=False,
add_detection_prompt=False,
one_hot=False,
disable_clip_to_image=False,
no_minus_one_for_one_hot=False,
separation_tokens=" ",
few_shot=0,
no_mask_for_od=False,
override_category=None,
use_caption_prompt=False,
caption_prompt=None,
max_query_len=256,
special_safeguard_for_coco_grounding=False,
random_sample_negative=-1,
**kwargs
):
super(CocoGrounding, self).__init__(img_folder, ann_file)
self.ids = sorted(self.ids)
ids = []
for img_id in self.ids:
if isinstance(img_id, str):
ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
else:
ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
anno = self.coco.loadAnns(ann_ids)
if has_valid_annotation(anno):
ids.append(img_id)
self.ids = ids
if few_shot:
ids = []
# cats_freq = [few_shot]*len(self.coco.cats.keys())
cats_freq = [few_shot]*max(list(self.coco.cats.keys()))
for img_id in self.ids:
if isinstance(img_id, str):
ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
else:
ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
anno = self.coco.loadAnns(ann_ids)
cat = set([ann['category_id'] for ann in anno]) #set/tuple corresponde to instance/image level
is_needed = sum([cats_freq[c-1]>0 for c in cat])
if is_needed:
ids.append(img_id)
for c in cat:
cats_freq[c-1] -= 1
# print(cat, cats_freq)
self.ids = ids
self.json_category_id_to_contiguous_id = {
v: i + 1 for i, v in enumerate(self.coco.getCatIds())
}
self.contiguous_category_id_to_json_id = {
v: k for k, v in self.json_category_id_to_contiguous_id.items()
}
if override_category is not None:
self.coco.dataset["categories"] = override_category
self.use_caption_prompt = use_caption_prompt
self.caption_prompt = caption_prompt
self.special_safeguard_for_coco_grounding = special_safeguard_for_coco_grounding
self.random_sample_negative = random_sample_negative
self.ind_to_class = self.categories(no_background=False)
self.id_to_img_map = {k: v for k, v in enumerate(self.ids)}
self._transforms = transforms
self.max_query_len = max_query_len
self.prepare = ConvertCocoPolysToMask(False, return_tokens, tokenizer=tokenizer, max_query_len=max_query_len)
self.tokenizer = tokenizer
self.is_train = is_train
self.ind_to_class = self.categories(no_background=False)
self.disable_shuffle = disable_shuffle
self.add_detection_prompt = add_detection_prompt
self.one_hot = one_hot
self.no_minus_one_for_one_hot = no_minus_one_for_one_hot
self.disable_clip_to_image = disable_clip_to_image
self.separation_tokens = separation_tokens
self.no_mask_for_od = no_mask_for_od
self.return_masks = return_masks
def categories(self, no_background=True):
categories = self.coco.dataset["categories"]
label_list = {}
for index, i in enumerate(categories):
# assert(index + 1 == i["id"])
if not no_background or (i["name"] != "__background__" and i['id'] != 0):
label_list[self.json_category_id_to_contiguous_id[i["id"]]] = i["name"]
return label_list
def get_box_mask(self, rect, img_size, mode="poly"):
assert mode=="poly", "Only support poly mask right now!"
x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
return [[x1, y1, x1, y2, x2, y2, x2, y1]]
def __getitem__(self, idx):
img, tgt = super(CocoGrounding, self).__getitem__(idx)
image_id = self.ids[idx]
tgt = [obj for obj in tgt if obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in tgt]
boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes
target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")
classes = [obj["category_id"] for obj in tgt]
classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
classes = torch.tensor(classes)
target.add_field("labels", classes)
if self.return_masks:
masks = []
is_box_mask = []
for obj, bbox in zip(tgt, target.bbox):
if "segmentation" in obj:
masks.append(obj["segmentation"])
is_box_mask.append(0)
else:
masks.append(self.get_box_mask(bbox, img.size, mode="poly"))
is_box_mask.append(1)
masks = SegmentationMask(masks, img.size, mode="poly")
is_box_mask = torch.tensor(is_box_mask)
target.add_field("masks", masks)
target.add_field("is_box_mask", is_box_mask)
if not self.disable_clip_to_image:
target = target.clip_to_image(remove_empty=True)
if self.special_safeguard_for_coco_grounding:
# Intended for LVIS
assert(not self.use_caption_prompt)
original_box_num = len(target)
target, positive_caption_length = check_for_positive_overflow(target, self.ind_to_class, self.tokenizer, self.max_query_len-2) # leave some space for the special tokens
if len(target) < original_box_num:
print("WARNING: removed {} boxes due to positive caption overflow".format(original_box_num - len(target)))
annotations, caption, greenlight_span_for_masked_lm_objective, label_to_positions = convert_object_detection_to_grounding_optimized_for_od(
target=target,
image_id=image_id,
ind_to_class=self.ind_to_class,
disable_shuffle=self.disable_shuffle,
add_detection_prompt=False,
add_detection_prompt_advanced=False,
random_sample_negative=self.random_sample_negative,
control_probabilities=(0.0, 0.0, 1.0, 0.0), # always try to add a lot of negatives
restricted_negative_list=None,
separation_tokens=self.separation_tokens,
max_num_labels=-1,
positive_caption_length=positive_caption_length,
tokenizer=self.tokenizer,
max_seq_length=self.max_query_len-2
)
else:
# Intended for COCO / ODinW
annotations, caption, greenlight_span_for_masked_lm_objective = convert_od_to_grounding_simple(
target=target,
image_id=image_id,
ind_to_class=self.ind_to_class,
disable_shuffle=self.disable_shuffle,
add_detection_prompt=self.add_detection_prompt,
separation_tokens=self.separation_tokens,
caption_prompt=self.caption_prompt if self.use_caption_prompt else None,
)
anno = {"image_id": image_id, "annotations": annotations, "caption": caption}
anno["greenlight_span_for_masked_lm_objective"] = greenlight_span_for_masked_lm_objective
if self.no_mask_for_od:
anno["greenlight_span_for_masked_lm_objective"].append((-1, -1, -1))
img, anno = self.prepare(img, anno, box_format="xyxy")
# for equivalence check
if self.one_hot:
logging.info("using one hot for equivalence check.")
one_hot_map = torch.zeros_like(anno["positive_map"], dtype=torch.float)
text_mask = torch.zeros(anno["positive_map"].shape[1], dtype=torch.int64)
# create one hot mapping
for ii, cls in enumerate(classes):
if self.no_minus_one_for_one_hot:
one_hot_map[ii, cls] = 1.0
else:
one_hot_map[ii, cls - 1] = 1.0
if self.no_minus_one_for_one_hot:
text_mask[:] = 1
else:
text_mask[:len(self.ind_to_class)] = 1
anno["positive_map"] = one_hot_map
anno["text_mask"] = text_mask
if self._transforms is not None:
img, target = self._transforms(img, target)
# add additional property
for ann in anno:
target.add_field(ann, anno[ann])
sanity_check_target_after_processing(target)
return img, target, idx
def get_img_info(self, index):
img_id = self.id_to_img_map[index]
img_data = self.coco.imgs[img_id]
return img_data
class ModulatedDataset(torchvision.datasets.CocoDetection):
def __init__(self,
img_folder,
ann_file,
transforms,
return_masks,
return_tokens,
is_train=False,
tokenizer=None,
disable_clip_to_image=False,
no_mask_for_gold=False,
max_query_len=256,
**kwargs):
super(ModulatedDataset, self).__init__(img_folder, ann_file)
self.ids = sorted(self.ids)
ids = []
for img_id in self.ids:
if isinstance(img_id, str):
ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
else:
ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
anno = self.coco.loadAnns(ann_ids)
if has_valid_annotation(anno):
ids.append(img_id)
self.ids = ids
self.id_to_img_map = {k: v for k, v in enumerate(self.ids)}
self._transforms = transforms
self.max_query_len = max_query_len
self.prepare = ConvertCocoPolysToMask(return_masks, return_tokens, tokenizer=tokenizer, max_query_len=max_query_len)
self.is_train = is_train
self.disable_clip_to_image = disable_clip_to_image
self.no_mask_for_gold = no_mask_for_gold
def __getitem__(self, idx):
img, target = super(ModulatedDataset, self).__getitem__(idx)
image_id = self.ids[idx]
coco_img = self.coco.loadImgs(image_id)[0]
caption = coco_img["caption"]
dataset_name = coco_img["dataset_name"] if "dataset_name" in coco_img else None
anno = {"image_id": image_id, "annotations": target, "caption": caption}
# This dataset is used for Flickr & Mixed, so the sequence is maskable
anno["greenlight_span_for_masked_lm_objective"] = [(0, len(caption))]
if self.no_mask_for_gold:
anno["greenlight_span_for_masked_lm_objective"].append((-1, -1, -1))
img, anno = self.prepare(img, anno)
# convert to BoxList (bboxes, labels)
boxes = torch.as_tensor(anno["boxes"]).reshape(-1, 4) # guard against no boxes
target = BoxList(boxes, img.size, mode="xyxy")
classes = anno["labels"]
target.add_field("labels", classes)
if self.prepare.return_masks:
target.add_field("masks", anno.pop("masks"))
target.add_field("is_box_mask", anno.pop("is_box_mask"))
if not self.disable_clip_to_image:
num_boxes = len(target.bbox)
target = target.clip_to_image(remove_empty=True)
assert num_boxes == len(target.bbox), "Box got removed in MixedDataset!!!"
# Check if bboxes are correct
# draw = ImageDraw.Draw(img)
# boxes = target.bbox
# for box in boxes:
# draw.rectangle([box[0], box[1], box[2], box[3]])
# img.save('OUTPUT/images/{}.jpg'.format(idx))
if self._transforms is not None:
img, target = self._transforms(img, target)
# add additional property
for ann in anno:
target.add_field(ann, anno[ann])
target.add_field("dataset_name", dataset_name)
for extra_key in ["sentence_id", "original_img_id", "original_id", "task_id"]:
if extra_key in coco_img:
target.add_field(extra_key, coco_img[extra_key])
if "tokens_positive_eval" in coco_img and not self.is_train:
tokenized = self.prepare.tokenizer(caption, return_tensors="pt")
target.add_field("positive_map_eval", create_positive_map(tokenized, coco_img["tokens_positive_eval"]))
target.add_field("nb_eval", len(target.get_field("positive_map_eval")))
sanity_check_target_after_processing(target)
return img, target, idx
def get_img_info(self, index):
img_id = self.id_to_img_map[index]
img_data = self.coco.imgs[img_id]
return img_data
class CocoDetection(data.Dataset):
"""`MS Coco Detection <http://mscoco.org/dataset/#detections-challenge2016>`_ Dataset.
Args:
root (string): Root directory where images are downloaded to.
annFile (string): Path to json annotation file.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.ToTensor``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
"""
def __init__(self, root, annFile, transform=None, target_transform=None):
from pycocotools.coco import COCO
self.root = root
self.coco = COCO(annFile)
self.ids = list(self.coco.imgs.keys())
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index, return_meta=False):
"""
Args:
index (int): Index
Returns:
tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``.
"""
coco = self.coco
img_id = self.ids[index]
if isinstance(img_id, str):
img_id = [img_id]
ann_ids = coco.getAnnIds(imgIds=img_id)
target = coco.loadAnns(ann_ids)
meta = coco.loadImgs(img_id)[0]
path = meta['file_name']
img = pil_loader(os.path.join(self.root, path))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
if return_meta:
return img, target, meta
else:
return img, target
def __len__(self):
return len(self.ids)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str
class ConvertCocoPolysToMask(object):
def __init__(self, return_masks=False, return_tokens=False, tokenizer=None, max_query_len=256):
self.return_masks = return_masks
self.return_tokens = return_tokens
self.tokenizer = tokenizer
self.max_query_len = max_query_len
def get_box_mask(self, rect, img_size, mode="poly"):
assert mode=="poly", "Only support poly mask right now!"
x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
return [[x1, y1, x1, y2, x2, y2, x2, y1]]
def __call__(self, image, target, ignore_box_screen=False, box_format="xywh"):
w, h = image.size
image_id = target["image_id"]
image_id = torch.tensor([image_id])
anno = target["annotations"]
caption = target["caption"] if "caption" in target else None
label_to_positions = target.get("label_to_positions", {})
greenlight_span_for_masked_lm_objective = target.get("greenlight_span_for_masked_lm_objective", None)
anno = [obj for obj in anno if "iscrowd" not in obj or obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in anno]
# guard against no boxes via resizing
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
if box_format == "xywh":
boxes[:, 2:] += boxes[:, :2] - 1 # TO_REMOVE = 1
boxes[:, 0::2].clamp_(min=0, max=w-1) # TO_REMOVE = 1
boxes[:, 1::2].clamp_(min=0, max=h-1) # TO_REMOVE = 1
classes = [obj["category_id"] for obj in anno]
classes = torch.tensor(classes, dtype=torch.int64)
if self.return_masks:
masks = []
is_box_mask = []
for obj, bbox in zip(anno, boxes):
if "segmentation" in obj:
masks.append(obj["segmentation"])
is_box_mask.append(0)
else:
masks.append(self.get_box_mask(bbox, image.size, mode='poly'))
is_box_mask.append(1)
masks = SegmentationMask(masks, image.size, mode='poly')
is_box_mask = torch.tensor(is_box_mask)
keypoints = None
if anno and "keypoints" in anno[0]:
keypoints = [obj["keypoints"] for obj in anno]
keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
num_keypoints = keypoints.shape[0]
if num_keypoints:
keypoints = keypoints.view(num_keypoints, -1, 3)
isfinal = None
if anno and "isfinal" in anno[0]:
isfinal = torch.as_tensor([obj["isfinal"] for obj in anno], dtype=torch.float)
tokens_positive = [] if self.return_tokens else None
if self.return_tokens and anno and "tokens" in anno[0]:
tokens_positive = [obj["tokens"] for obj in anno]
elif self.return_tokens and anno and "tokens_positive" in anno[0]:
tokens_positive = [obj["tokens_positive"] for obj in anno]
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
boxes = boxes[keep]
classes = classes[keep]
if self.return_masks:
masks = masks[keep]
is_box_mask = is_box_mask[keep]
if keypoints is not None:
keypoints = keypoints[keep]
target = {}
target["boxes"] = boxes
target["labels"] = classes
if caption is not None:
target["caption"] = caption
if self.return_masks:
target["masks"] = masks
target["is_box_mask"] = is_box_mask
target["image_id"] = image_id
if keypoints is not None:
target["keypoints"] = keypoints
if tokens_positive is not None:
target["tokens_positive"] = []
for i, k in enumerate(keep):
if k or ignore_box_screen:
target["tokens_positive"].append(tokens_positive[i])
if isfinal is not None:
target["isfinal"] = isfinal
# for conversion to coco api
area = torch.tensor([obj["area"] for obj in anno])
iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno])
target["area"] = area[keep]
target["iscrowd"] = iscrowd[keep]
target["orig_size"] = torch.as_tensor([int(h), int(w)])
target["size"] = torch.as_tensor([int(h), int(w)])
if self.return_tokens and self.tokenizer is not None:
if not ignore_box_screen:
assert len(target["boxes"]) == len(target["tokens_positive"])
tokenized = self.tokenizer(caption, return_tensors="pt",
max_length=self.max_query_len,
truncation=True)
target["positive_map"] = create_positive_map(tokenized, target["tokens_positive"])
target['greenlight_map'] = create_greenlight_map(greenlight_span_for_masked_lm_objective,tokenized)
target["positive_map_for_od_labels"] = create_positive_map_for_od_labels(tokenized, label_to_positions)
original_od_label = []
for obj in anno:
original_od_label.append(
obj.get("original_od_label", -10)) # NOTE: The padding value has to be not the same as -1 or -100
target["original_od_label"] = torch.as_tensor(original_od_label)
return image, target
def create_greenlight_map(tok_list, tokenized):
# An example tok_list:
# [(0, 5), (10, 13), (-1, -1, -1)]
# The last one is a special indicator..
greenlight_map = torch.zeros(256, dtype=torch.float)
for item in tok_list:
if len(item) != 2:
assert(len(item) == 3)
# Make everything unmakable
greenlight_map[:] = -1
break
beg, end = item
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
greenlight_map[beg_pos: end_pos + 1].fill_(1)
return greenlight_map
def create_positive_map_for_od_labels(tokenized, label_to_positions):
"""construct a map such that positive_map[i] = j, where j is the object detection label of the token i"""
"""
{3: [1: 5)}
256 : -1 3 3 3 3 -1 .. 8 8 ..
the woman in the garden
-1 -1 -1 -1 -1
"""
positive_map = torch.ones(256, dtype=torch.float) * -1 # -1 means no match
keys = list(label_to_positions.keys())
for j, key in enumerate(keys):
tok_list = label_to_positions[key]
# one label only mapps to one location
beg, end = tok_list
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
positive_map[beg_pos: end_pos + 1].fill_(key)
return positive_map
def convert_coco_poly_to_mask(segmentations, height, width):
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = torch.as_tensor(mask, dtype=torch.uint8)
mask = mask.any(dim=2)
masks.append(mask)
if masks:
masks = torch.stack(masks, dim=0)
else:
masks = torch.zeros((0, height, width), dtype=torch.uint8)
return masks
def create_positive_map(tokenized, tokens_positive):
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j"""
positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float)
for j, tok_list in enumerate(tokens_positive):
for (beg, end) in tok_list:
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
positive_map[j, beg_pos: end_pos + 1].fill_(1)
return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)
def pil_loader(path, retry=5):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
ri = 0
while ri < retry:
try:
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
except:
ri += 1