# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch.nn import functional as F from maskrcnn_benchmark.layers import smooth_l1_loss from maskrcnn_benchmark.modeling.matcher import Matcher from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou from maskrcnn_benchmark.modeling.utils import cat def project_masks_on_boxes(segmentation_masks, proposals, discretization_size): """ Given segmentation masks and the bounding boxes corresponding to the location of the masks in the image, this function crops and resizes the masks in the position defined by the boxes. This prepares the masks for them to be fed to the loss computation as the targets. Arguments: segmentation_masks: an instance of SegmentationMask proposals: an instance of BoxList """ masks = [] M = discretization_size device = proposals.bbox.device proposals = proposals.convert("xyxy") assert segmentation_masks.size == proposals.size, "{}, {}".format( segmentation_masks, proposals ) # TODO put the proposals on the CPU, as the representation for the # masks is not efficient GPU-wise (possibly several small tensors for # representing a single instance mask) proposals = proposals.bbox.to(torch.device("cpu")) for segmentation_mask, proposal in zip(segmentation_masks, proposals): # crop the masks, resize them to the desired resolution and # then convert them to the tensor representation, # instead of the list representation that was used cropped_mask = segmentation_mask.crop(proposal) scaled_mask = cropped_mask.resize((M, M)) mask = scaled_mask.convert(mode="mask") masks.append(mask) if len(masks) == 0: return torch.empty(0, dtype=torch.float32, device=device) return torch.stack(masks, dim=0).to(device, dtype=torch.float32) class MaskRCNNLossComputation(object): def __init__(self, proposal_matcher, discretization_size, vl_version=False): """ Arguments: proposal_matcher (Matcher) discretization_size (int) """ self.proposal_matcher = proposal_matcher self.discretization_size = discretization_size self.vl_version = vl_version def match_targets_to_proposals(self, proposal, target): match_quality_matrix = boxlist_iou(target, proposal) matched_idxs = self.proposal_matcher(match_quality_matrix) # Mask RCNN needs "labels" and "masks "fields for creating the targets if self.vl_version: target = target.copy_with_fields(["positive_map", "masks"]) else: target = target.copy_with_fields(["labels", "masks"]) # get the targets corresponding GT for each proposal # NB: need to clamp the indices because we can have a single # GT in the image, and matched_idxs can be -2, which goes # out of bounds matched_targets = target[matched_idxs.clamp(min=0)] matched_targets.add_field("matched_idxs", matched_idxs) return matched_targets def prepare_targets(self, proposals, targets): labels = [] masks = [] positive_maps = [] for proposals_per_image, targets_per_image in zip(proposals, targets): matched_targets = self.match_targets_to_proposals( proposals_per_image, targets_per_image ) matched_idxs = matched_targets.get_field("matched_idxs") if self.vl_version: positive_maps_per_image = matched_targets.get_field("positive_map") # this can probably be removed, but is left here for clarity # and completeness neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD positive_maps_per_image[neg_inds, :] = 0 positive_maps.append(positive_maps_per_image) # TODO: make sure for the softmax [NoObj] case labels_per_image = positive_maps_per_image.sum(dim=-1) labels_per_image = labels_per_image.to(dtype=torch.int64) else: labels_per_image = matched_targets.get_field("labels") labels_per_image = labels_per_image.to(dtype=torch.int64) # this can probably be removed, but is left here for clarity # and completeness neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD labels_per_image[neg_inds] = 0 # mask scores are only computed on positive samples positive_inds = torch.nonzero(labels_per_image > 0).squeeze(1) segmentation_masks = matched_targets.get_field("masks") segmentation_masks = segmentation_masks[positive_inds] positive_proposals = proposals_per_image[positive_inds] masks_per_image = project_masks_on_boxes( segmentation_masks, positive_proposals, self.discretization_size ) labels.append(labels_per_image) masks.append(masks_per_image) return labels, masks, positive_maps def __call__(self, proposals, mask_logits, targets): """ Arguments: proposals (list[BoxList]) mask_logits (Tensor) targets (list[BoxList]) Return: mask_loss (Tensor): scalar tensor containing the loss """ labels, mask_targets, positive_maps = self.prepare_targets(proposals, targets) labels = cat(labels, dim=0) mask_targets = cat(mask_targets, dim=0) positive_inds = torch.nonzero(labels > 0).squeeze(1) labels_pos = labels[positive_inds] # TODO: a hack for binary mask head labels_pos = (labels_pos > 0).to(dtype=torch.int64) # torch.mean (in binary_cross_entropy_with_logits) doesn't # accept empty tensors, so handle it separately if mask_targets.numel() == 0: return mask_logits.sum() * 0 if self.vl_version: positive_maps = cat(positive_maps, dim=0) mask_logits_pos = [] for positive_ind in positive_inds: positive_map = positive_maps[positive_ind] # TODO: make sure for the softmax [NoObj] case mask_logit_pos = mask_logits[positive_ind][torch.nonzero(positive_map).squeeze(1)].mean(dim=0, keepdim=True) mask_logits_pos.append(mask_logit_pos) mask_logits_pos = cat(mask_logits_pos, dim=0) mask_loss = F.binary_cross_entropy_with_logits( mask_logits_pos, mask_targets ) else: mask_loss = F.binary_cross_entropy_with_logits( mask_logits[positive_inds, labels_pos], mask_targets ) return mask_loss def make_roi_mask_loss_evaluator(cfg): matcher = Matcher( cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD, cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD, allow_low_quality_matches=False, ) loss_evaluator = MaskRCNNLossComputation( matcher, cfg.MODEL.ROI_MASK_HEAD.RESOLUTION, vl_version=cfg.MODEL.ROI_MASK_HEAD.PREDICTOR.startswith("VL") ) return loss_evaluator