import os import re import torch from pdf2image import convert_from_path from helpers import majority_vote_dicts, limit_pagenumbers from transformers import DonutProcessor, VisionEncoderDecoderModel os.environ["TOKENIZERS_PARALLELISM"] = "false" model_name = "harish3110/donut-quandri-all-data" processor = DonutProcessor.from_pretrained(model_name) model = VisionEncoderDecoderModel.from_pretrained(model_name) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) def process_pdf(pdf_file, cut_off=20): limit_pagenumbers(pdf_file.name) images = convert_from_path(pdf_file.name) results = [] # cut pdf to 20 pages if len(images) > cut_off: images = images[:cut_off] for image in images: result = process_document(image) results.append(result) return majority_vote_dicts(results) def process_document(image): # prepare encoder inputs pixel_values = processor(image, return_tensors="pt").pixel_values # prepare decoder inputs task_prompt = "" decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids # generate answer outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) # postprocess sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token return processor.token2json(sequence)