Spaces:
Sleeping
Sleeping
File size: 9,309 Bytes
d8d14f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# AsyncWorkflow Documentation
The `AsyncWorkflow` class represents an asynchronous workflow that executes tasks concurrently using multiple agents. It allows for efficient task management, leveraging Python's `asyncio` for concurrent execution.
## Key Features
- **Concurrent Task Execution**: Distribute tasks across multiple agents asynchronously.
- **Configurable Workers**: Limit the number of concurrent workers (agents) for better resource management.
- **Autosave Results**: Optionally save the task execution results automatically.
- **Verbose Logging**: Enable detailed logging to monitor task execution.
- **Error Handling**: Gracefully handles exceptions raised by agents during task execution.
---
## Attributes
| Attribute | Type | Description |
|-------------------|---------------------|-----------------------------------------------------------------------------|
| `name` | `str` | The name of the workflow. |
| `agents` | `List[Agent]` | A list of agents participating in the workflow. |
| `max_workers` | `int` | The maximum number of concurrent workers (default: 5). |
| `dashboard` | `bool` | Whether to display a dashboard (currently not implemented). |
| `autosave` | `bool` | Whether to autosave task results (default: `False`). |
| `verbose` | `bool` | Whether to enable detailed logging (default: `False`). |
| `task_pool` | `List` | A pool of tasks to be executed. |
| `results` | `List` | A list to store results of executed tasks. |
| `loop` | `asyncio.EventLoop` | The event loop for asynchronous execution. |
---
**Description**:
Initializes the `AsyncWorkflow` with specified agents, configuration, and options.
**Parameters**:
- `name` (`str`): Name of the workflow. Default: "AsyncWorkflow".
- `agents` (`List[Agent]`): A list of agents. Default: `None`.
- `max_workers` (`int`): The maximum number of workers. Default: `5`.
- `dashboard` (`bool`): Enable dashboard visualization (placeholder for future implementation).
- `autosave` (`bool`): Enable autosave of task results. Default: `False`.
- `verbose` (`bool`): Enable detailed logging. Default: `False`.
- `**kwargs`: Additional parameters for `BaseWorkflow`.
---
### `_execute_agent_task`
```python
async def _execute_agent_task(self, agent: Agent, task: str) -> Any:
```
**Description**:
Executes a single task asynchronously using a given agent.
**Parameters**:
- `agent` (`Agent`): The agent responsible for executing the task.
- `task` (`str`): The task to be executed.
**Returns**:
- `Any`: The result of the task execution or an error message in case of an exception.
**Example**:
```python
result = await workflow._execute_agent_task(agent, "Sample Task")
```
---
### `run`
```python
async def run(self, task: str) -> List[Any]:
```
**Description**:
Executes the specified task concurrently across all agents.
**Parameters**:
- `task` (`str`): The task to be executed by all agents.
**Returns**:
- `List[Any]`: A list of results or error messages returned by the agents.
**Raises**:
- `ValueError`: If no agents are provided in the workflow.
**Example**:
```python
import asyncio
agents = [Agent("Agent1"), Agent("Agent2")]
workflow = AsyncWorkflow(agents=agents, verbose=True)
results = asyncio.run(workflow.run("Process Data"))
print(results)
```
---
## Production-Grade Financial Example: Multiple Agents
### Example: Stock Analysis and Investment Strategy
```python
import asyncio
from typing import List
from swarm_models import OpenAIChat
from swarms.structs.async_workflow import (
SpeakerConfig,
SpeakerRole,
create_default_workflow,
run_workflow_with_retry,
)
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
from swarms.structs.agent import Agent
async def create_specialized_agents() -> List[Agent]:
"""Create a set of specialized agents for financial analysis"""
# Base model configuration
model = OpenAIChat(model_name="gpt-4o")
# Financial Analysis Agent
financial_agent = Agent(
agent_name="Financial-Analysis-Agent",
agent_description="Personal finance advisor agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT
+ "Output the <DONE> token when you're done creating a portfolio of etfs, index, funds, and more for AI",
max_loops=1,
llm=model,
dynamic_temperature_enabled=True,
user_name="Kye",
retry_attempts=3,
context_length=8192,
return_step_meta=False,
output_type="str",
auto_generate_prompt=False,
max_tokens=4000,
stopping_token="<DONE>",
saved_state_path="financial_agent.json",
interactive=False,
)
# Risk Assessment Agent
risk_agent = Agent(
agent_name="Risk-Assessment-Agent",
agent_description="Investment risk analysis specialist",
system_prompt="Analyze investment risks and provide risk scores. Output <DONE> when analysis is complete.",
max_loops=1,
llm=model,
dynamic_temperature_enabled=True,
user_name="Kye",
retry_attempts=3,
context_length=8192,
output_type="str",
max_tokens=4000,
stopping_token="<DONE>",
saved_state_path="risk_agent.json",
interactive=False,
)
# Market Research Agent
research_agent = Agent(
agent_name="Market-Research-Agent",
agent_description="AI and tech market research specialist",
system_prompt="Research AI market trends and growth opportunities. Output <DONE> when research is complete.",
max_loops=1,
llm=model,
dynamic_temperature_enabled=True,
user_name="Kye",
retry_attempts=3,
context_length=8192,
output_type="str",
max_tokens=4000,
stopping_token="<DONE>",
saved_state_path="research_agent.json",
interactive=False,
)
return [financial_agent, risk_agent, research_agent]
async def main():
# Create specialized agents
agents = await create_specialized_agents()
# Create workflow with group chat enabled
workflow = create_default_workflow(
agents=agents,
name="AI-Investment-Analysis-Workflow",
enable_group_chat=True,
)
# Configure speaker roles
workflow.speaker_system.add_speaker(
SpeakerConfig(
role=SpeakerRole.COORDINATOR,
agent=agents[0], # Financial agent as coordinator
priority=1,
concurrent=False,
required=True,
)
)
workflow.speaker_system.add_speaker(
SpeakerConfig(
role=SpeakerRole.CRITIC,
agent=agents[1], # Risk agent as critic
priority=2,
concurrent=True,
)
)
workflow.speaker_system.add_speaker(
SpeakerConfig(
role=SpeakerRole.EXECUTOR,
agent=agents[2], # Research agent as executor
priority=2,
concurrent=True,
)
)
# Investment analysis task
investment_task = """
Create a comprehensive investment analysis for a $40k portfolio focused on AI growth opportunities:
1. Identify high-growth AI ETFs and index funds
2. Analyze risks and potential returns
3. Create a diversified portfolio allocation
4. Provide market trend analysis
Present the results in a structured markdown format.
"""
try:
# Run workflow with retry
result = await run_workflow_with_retry(
workflow=workflow, task=investment_task, max_retries=3
)
print("\nWorkflow Results:")
print("================")
# Process and display agent outputs
for output in result.agent_outputs:
print(f"\nAgent: {output.agent_name}")
print("-" * (len(output.agent_name) + 8))
print(output.output)
# Display group chat history if enabled
if workflow.enable_group_chat:
print("\nGroup Chat Discussion:")
print("=====================")
for msg in workflow.speaker_system.message_history:
print(f"\n{msg.role} ({msg.agent_name}):")
print(msg.content)
# Save detailed results
if result.metadata.get("shared_memory_keys"):
print("\nShared Insights:")
print("===============")
for key in result.metadata["shared_memory_keys"]:
value = workflow.shared_memory.get(key)
if value:
print(f"\n{key}:")
print(value)
except Exception as e:
print(f"Workflow failed: {str(e)}")
finally:
await workflow.cleanup()
if __name__ == "__main__":
# Run the example
asyncio.run(main())
```
---
|