Spaces:
Sleeping
Sleeping
File size: 22,606 Bytes
d8d14f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
# ConcurrentWorkflow Documentation
## Overview
The `ConcurrentWorkflow` class is designed to facilitate the concurrent execution of multiple agents, each tasked with solving a specific query or problem. This class is particularly useful in scenarios where multiple agents need to work in parallel, allowing for efficient resource utilization and faster completion of tasks. The workflow manages the execution, collects metadata, and optionally saves the results in a structured format.
### Key Features
- **Concurrent Execution**: Runs multiple agents simultaneously using Python's `asyncio` and `ThreadPoolExecutor`.
- **Metadata Collection**: Gathers detailed metadata about each agent's execution, including start and end times, duration, and output.
- **Customizable Output**: Allows the user to save metadata to a file or return it as a string or dictionary.
- **Error Handling**: Implements retry logic for improved reliability.
- **Batch Processing**: Supports running tasks in batches and parallel execution.
- **Asynchronous Execution**: Provides asynchronous run options for improved performance.
## Class Definitions
### AgentOutputSchema
The `AgentOutputSchema` class is a data model that captures the output and metadata for each agent's execution. It inherits from `pydantic.BaseModel` and provides structured fields to store essential information.
| Attribute | Type | Description |
|---------------|----------------|-----------------------------------------------------------|
| `run_id` | `Optional[str]`| Unique ID for the run, automatically generated using `uuid`. |
| `agent_name` | `Optional[str]`| Name of the agent that executed the task. |
| `task` | `Optional[str]`| The task or query given to the agent. |
| `output` | `Optional[str]`| The output generated by the agent. |
| `start_time` | `Optional[datetime]`| The time when the agent started the task. |
| `end_time` | `Optional[datetime]`| The time when the agent completed the task. |
| `duration` | `Optional[float]` | The total time taken to complete the task, in seconds. |
### MetadataSchema
The `MetadataSchema` class is another data model that aggregates the outputs from all agents involved in the workflow. It also inherits from `pydantic.BaseModel` and includes fields for additional workflow-level metadata.
| Attribute | Type | Description |
|----------------|------------------------|-----------------------------------------------------------|
| `swarm_id` | `Optional[str]` | Unique ID for the workflow run, generated using `uuid`. |
| `task` | `Optional[str]` | The task or query given to all agents. |
| `description` | `Optional[str]` | A description of the workflow, typically indicating concurrent execution. |
| `agents` | `Optional[List[AgentOutputSchema]]` | A list of agent outputs and metadata. |
| `timestamp` | `Optional[datetime]` | The timestamp when the workflow was executed. |
## ConcurrentWorkflow
The `ConcurrentWorkflow` class is the core class that manages the concurrent execution of agents. It inherits from `BaseSwarm` and includes several key attributes and methods to facilitate this process.
### Attributes
| Attribute | Type | Description |
|------------------------|-------------------------|-----------------------------------------------------------|
| `name` | `str` | The name of the workflow. Defaults to `"ConcurrentWorkflow"`. |
| `description` | `str` | A brief description of the workflow. |
| `agents` | `List[Agent]` | A list of agents to be executed concurrently. |
| `metadata_output_path` | `str` | Path to save the metadata output. Defaults to `"agent_metadata.json"`. |
| `auto_save` | `bool` | Flag indicating whether to automatically save the metadata. |
| `output_schema` | `BaseModel` | The output schema for the metadata, defaults to `MetadataSchema`. |
| `max_loops` | `int` | Maximum number of loops for the workflow, defaults to `1`. |
| `return_str_on` | `bool` | Flag to return output as string. Defaults to `False`. |
| `agent_responses` | `List[str]` | List of agent responses as strings. |
| `auto_generate_prompts`| `bool` | Flag indicating whether to auto-generate prompts for agents. |
## Methods
### ConcurrentWorkflow.\_\_init\_\_
Initializes the `ConcurrentWorkflow` class with the provided parameters.
#### Parameters
| Parameter | Type | Default Value | Description |
|-----------------------|----------------|----------------------------------------|-----------------------------------------------------------|
| `name` | `str` | `"ConcurrentWorkflow"` | The name of the workflow. |
| `description` | `str` | `"Execution of multiple agents concurrently"` | A brief description of the workflow. |
| `agents` | `List[Agent]` | `[]` | A list of agents to be executed concurrently. |
| `metadata_output_path`| `str` | `"agent_metadata.json"` | Path to save the metadata output. |
| `auto_save` | `bool` | `False` | Flag indicating whether to automatically save the metadata. |
| `output_schema` | `BaseModel` | `MetadataSchema` | The output schema for the metadata. |
| `max_loops` | `int` | `1` | Maximum number of loops for the workflow. |
| `return_str_on` | `bool` | `False` | Flag to return output as string. |
| `agent_responses` | `List[str]` | `[]` | List of agent responses as strings. |
| `auto_generate_prompts`| `bool` | `False` | Flag indicating whether to auto-generate prompts for agents. |
#### Raises
- `ValueError`: If the list of agents is empty or if the description is empty.
### ConcurrentWorkflow.activate_auto_prompt_engineering
Activates the auto-generate prompts feature for all agents in the workflow.
#### Example
```python
workflow = ConcurrentWorkflow(agents=[Agent()])
workflow.activate_auto_prompt_engineering()
# All agents in the workflow will now auto-generate prompts.
```
### ConcurrentWorkflow._run_agent
Runs a single agent with the provided task and tracks its output and metadata.
#### Parameters
| Parameter | Type | Description |
|-------------|-------------------------|-----------------------------------------------------------|
| `agent` | `Agent` | The agent instance to run. |
| `task` | `str` | The task or query to give to the agent. |
| `executor` | `ThreadPoolExecutor` | The thread pool executor to use for running the agent task. |
#### Returns
- `AgentOutputSchema`: The metadata and output from the agent's execution.
#### Detailed Explanation
This method handles the execution of a single agent by offloading the task to a thread using `ThreadPoolExecutor`. It also tracks the time taken by the agent to complete the task and logs relevant information. If an exception occurs during execution, it captures the error and includes it in the output. The method implements retry logic for improved reliability.
### ConcurrentWorkflow.transform_metadata_schema_to_str
Transforms the metadata schema into a string format.
#### Parameters
| Parameter | Type | Description |
|-------------|---------------------|-----------------------------------------------------------|
| `schema` | `MetadataSchema` | The metadata schema to transform. |
#### Returns
- `str`: The metadata schema as a formatted string.
#### Detailed Explanation
This method converts the metadata stored in `MetadataSchema` into a human-readable string format, particularly focusing on the agent names and their respective outputs. This is useful for quickly reviewing the results of the concurrent workflow in a more accessible format.
### ConcurrentWorkflow._execute_agents_concurrently
Executes multiple agents concurrently with the same task.
#### Parameters
| Parameter | Type | Description |
|-------------|--------------|-----------------------------------------------------------|
| `task` | `str` | The task or query to give to all agents. |
#### Returns
- `MetadataSchema`: The aggregated metadata and outputs from all agents.
#### Detailed Explanation
This method is responsible for managing the concurrent execution of all agents. It uses `asyncio.gather` to run multiple agents simultaneously and collects their outputs into a `MetadataSchema` object. This aggregated metadata can then be saved or returned depending on the workflow configuration. The method includes retry logic for improved reliability.
### ConcurrentWorkflow.save_metadata
Saves the metadata to a JSON file based on the `auto_save` flag.
#### Example
```python
workflow.save_metadata()
# Metadata will be saved to the specified path if auto_save is True.
```
### ConcurrentWorkflow.run
Runs the workflow for the provided task, executes agents concurrently, and saves metadata.
#### Parameters
| Parameter | Type | Description |
|-------------|--------------|-----------------------------------------------------------|
| `task` | `str` | The task or query to give to all agents. |
#### Returns
- `Union[Dict[str, Any], str]`: The final metadata as a dictionary or a string, depending on the `return_str_on` flag.
#### Detailed Explanation
This is the main method that a user will call to execute the workflow. It manages the entire process from starting the agents to collecting and optionally saving the metadata. The method also provides flexibility in how the results are returned—either as a JSON dictionary or as a formatted string.
### ConcurrentWorkflow.run_batched
Runs the workflow for a batch of tasks, executing agents concurrently for each task.
#### Parameters
| Parameter | Type | Description |
|-------------|--------------|-----------------------------------------------------------|
| `tasks` | `List[str]` | A list of tasks or queries to give to all agents. |
#### Returns
- `List[Union[Dict[str, Any], str]]`: A list of final metadata for each task, either as a dictionary or a string.
#### Example
```python
tasks = ["Task 1", "Task 2"]
results = workflow.run_batched(tasks)
print(results)
```
### ConcurrentWorkflow.run_async
Runs the workflow asynchronously for the given task.
#### Parameters
| Parameter | Type | Description |
|-------------|--------------|-----------------------------------------------------------|
| `task` | `str` | The task or query to give to all agents. |
#### Returns
- `asyncio.Future`: A future object representing the asynchronous operation.
#### Example
```python
async def run_async_example():
future = workflow.run_async(task="Example task")
result = await future
print(result)
```
### ConcurrentWorkflow.run_batched_async
Runs the workflow asynchronously for a batch of tasks.
#### Parameters
| Parameter | Type | Description |
|-------------|--------------|-----------------------------------------------------------|
| `tasks` | `List[str]` | A list of tasks or queries to give to all agents. |
#### Returns
- `List[asyncio.Future]`: A list of future objects representing the asynchronous operations for each task.
#### Example
```python
tasks = ["Task 1", "Task 2"]
futures = workflow.run_batched_async(tasks)
results = await asyncio.gather(*futures)
print(results)
```
### ConcurrentWorkflow.run_parallel
Runs the workflow in parallel for a batch of tasks.
#### Parameters
| Parameter | Type | Description |
|-------------|--------------|-----------------------------------------------------------|
| `tasks` | `List[str]` | A list of tasks or queries to give to all agents. |
#### Returns
- `List[Union[Dict[str, Any], str]]`: A list of final metadata for each task, either as a dictionary or a string.
#### Example
```python
tasks = ["Task 1", "Task 2"]
results = workflow.run_parallel(tasks)
print(results)
```
### ConcurrentWorkflow.run_parallel_async
Runs the workflow in parallel asynchronously for a batch of tasks.
#### Parameters
| Parameter | Type | Description |
|-------------|--------------|-----------------------------------------------------------|
| `tasks` | `List[str]` | A list of tasks or queries to give to all agents. |
#### Returns
- `List[asyncio.Future]`: A list of future objects representing the asynchronous operations for each task.
#### Example
```python
tasks = ["Task 1", "Task 2"]
futures = workflow.run_parallel_async(tasks)
results = await asyncio.gather(*futures)
print(results)
```
## Usage Examples
### Example 1: Basic Usage
```python
import os
from swarms import Agent, ConcurrentWorkflow, OpenAIChat
# Initialize agents
model = OpenAIChat(
api_key=os.getenv("OPENAI_API_KEY"),
model_name="gpt-4o-mini",
temperature=0.1,
)
# Define custom system prompts for each social media platform
TWITTER_AGENT_SYS_PROMPT = """
You are a Twitter marketing expert specializing in real estate. Your task is to create engaging, concise tweets to promote properties, analyze trends to maximize engagement, and use appropriate hashtags and timing to reach potential buyers.
"""
INSTAGRAM_AGENT_SYS_PROMPT = """
You are an Instagram marketing expert focusing on real estate. Your task is to create visually appealing posts with engaging captions and hashtags to showcase properties, targeting specific demographics interested in real estate.
"""
FACEBOOK_AGENT_SYS_PROMPT = """
You are a Facebook marketing expert for real estate. Your task is to craft posts optimized for engagement and reach on Facebook, including using images, links, and targeted messaging to attract potential property buyers.
"""
LINKEDIN_AGENT_SYS_PROMPT = """
You are a LinkedIn marketing expert for the real estate industry. Your task is to create professional and informative posts, highlighting property features, market trends, and investment opportunities, tailored to professionals and investors.
"""
EMAIL_AGENT_SYS_PROMPT = """
You are an Email marketing expert specializing in real estate. Your task is to write compelling email campaigns to promote properties, focusing on personalization, subject lines, and effective call-to-action strategies to drive conversions.
"""
# Initialize your agents for different social media platforms
agents = [
Agent(
agent_name="Twitter-RealEstate-Agent",
system_prompt=TWITTER_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
dynamic_temperature_enabled=True,
saved_state_path="twitter_realestate_agent.json",
user_name="swarm_corp",
retry_attempts=1,
),
Agent(
agent_name="Instagram-RealEstate-Agent",
system_prompt=INSTAGRAM_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
dynamic_temperature_enabled=True,
saved_state_path="instagram_realestate_agent.json",
user_name="swarm_corp",
retry_attempts=1,
),
Agent(
agent_name="Facebook-RealEstate-Agent",
system_prompt=FACEBOOK_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
dynamic_temperature_enabled=True,
saved_state_path="facebook_realestate_agent.json",
user_name="swarm_corp",
retry_attempts=1,
),
Agent(
agent_name="LinkedIn-RealEstate-Agent",
system_prompt=LINKEDIN_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
dynamic_temperature_enabled=True,
saved_state_path="linkedin_realestate_agent.json",
user_name="swarm_corp",
retry_attempts=1,
),
Agent(
agent_name="Email-RealEstate-Agent",
system_prompt=EMAIL_AGENT_SYS_PROMPT,
llm=model,
max_loops=1,
dynamic_temperature_enabled=True,
saved_state_path="email_realestate_agent.json",
user_name="swarm_corp",
retry_attempts=1,
),
]
# Initialize workflow
workflow = ConcurrentWorkflow(
name="Real Estate Marketing Swarm",
agents=agents,
metadata_output_path="metadata.json",
description="Concurrent swarm of content generators for real estate!",
auto_save=True,
)
# Run workflow
task = "Create a marketing campaign for a luxury beachfront property in Miami, focusing on its stunning ocean views, private beach access, and state-of-the-art amenities."
metadata = workflow.run(task)
print(metadata)
```
### Example 2: Custom Output Handling
```python
# Initialize workflow with string output
workflow = ConcurrentWorkflow(
name="Real Estate Marketing Swarm",
agents=agents,
metadata_output_path="metadata.json",
description="Concurrent swarm of content generators for real estate!",
auto_save=True,
return_str_on=True
)
# Run workflow
task = "Develop a marketing strategy for a newly renovated historic townhouse in Boston, emphasizing its blend of classic architecture and modern amenities."
metadata_str = workflow.run(task)
print(metadata_str)
```
### Example 3: Error Handling and Debugging
```python
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
# Initialize workflow
workflow = ConcurrentWorkflow(
name="Real Estate Marketing Swarm",
agents=agents,
metadata_output_path="metadata.json",
description="Concurrent swarm of content generators for real estate!",
auto_save=True
)
# Run workflow with error handling
try:
task = "Create a marketing campaign for a eco-friendly tiny house community in Portland, Oregon."
metadata = workflow.run(task)
print(metadata)
except Exception as e:
logging.error(f"An error occurred during workflow execution: {str(e)}")
# Additional error handling or debugging steps can be added here
```
### Example 4: Batch Processing
```python
# Initialize workflow
workflow = ConcurrentWorkflow(
name="Real Estate Marketing Swarm",
agents=agents,
metadata_output_path="metadata_batch.json",
description="Concurrent swarm of content generators for real estate!",
auto_save=True
)
# Define a list of tasks
tasks = [
"Market a family-friendly suburban home with a large backyard and excellent schools nearby.",
"Promote a high-rise luxury apartment in New York City with panoramic skyline views.",
"Advertise a ski-in/ski-out chalet in Aspen, Colorado, perfect for winter sports enthusiasts."
]
# Run workflow in batch mode
results = workflow.run_batched(tasks)
# Process and print results
for task, result in zip(tasks, results):
print(f"Task: {task}")
print(f"Result: {result}\n")
```
### Example 5: Asynchronous Execution
```python
import asyncio
# Initialize workflow
workflow = ConcurrentWorkflow(
name="Real Estate Marketing Swarm",
agents=agents,
metadata_output_path="metadata_async.json",
description="Concurrent swarm of content generators for real estate!",
auto_save=True
)
async def run_async_workflow():
task = "Develop a marketing strategy for a sustainable, off-grid mountain retreat in Colorado."
result = await workflow.run_async(task)
print(result)
# Run the async workflow
asyncio.run(run_async_workflow())
```
## Tips and Best Practices
- **Agent Initialization**: Ensure that all agents are correctly initialized with their required configurations before passing them to `ConcurrentWorkflow`.
- **Metadata Management**: Use the `auto_save` flag to automatically save metadata if you plan to run multiple workflows in succession.
- **Concurrency Limits**: Adjust the number of agents based on your system's capabilities to avoid overloading resources.
- **Error Handling**: Implement try-except blocks when running workflows to catch and handle exceptions gracefully.
- **Batch Processing**: For large numbers of tasks, consider using `run_batched` or `run_parallel` methods to improve overall throughput.
- **Asynchronous Operations**: Utilize asynchronous methods (`run_async`, `run_batched_async`, `run_parallel_async`) when dealing with I/O-bound tasks or when you need to maintain responsiveness in your application.
- **Logging**: Implement detailed logging to track the progress of your workflows and troubleshoot any issues that may arise.
- **Resource Management**: Be mindful of API rate limits and resource consumption, especially when running large batches or parallel executions.
- **Testing**: Thoroughly test your workflows with various inputs and edge cases to ensure robust performance in production environments.
## References and Resources
- [Python's `asyncio` Documentation](https://docs.python.org/3/library/asyncio.html)
- [Pydantic Documentation](https://pydantic-docs.helpmanual.io/)
- [ThreadPoolExecutor in Python](https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor)
- [Loguru for Logging in Python](https://loguru.readthedocs.io/en/stable/)
- [Tenacity: Retry library for Python](https://tenacity.readthedocs.io/en/latest/) |