File size: 9,288 Bytes
d8d14f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Task Class Documentation

The `Task` class is a pivotal component designed for managing tasks in a sequential workflow. This class allows for the execution of tasks using various agents, which can be callable objects or specific instances of the `Agent` class. It supports the scheduling of tasks, handling their dependencies, and setting conditions and actions that govern their execution.

Key features of the `Task` class include:
- Executing tasks with specified agents and handling their results.
- Scheduling tasks to run at specified times.
- Setting triggers, actions, and conditions for tasks.
- Managing task dependencies and priorities.
- Providing a history of task executions for tracking purposes.

## Class Definition

The `Task` class is defined as follows:


### Attributes

| Attribute      | Type                        | Description                                                                           |
|----------------|-----------------------------|---------------------------------------------------------------------------------------|
| `agent`        | `Union[Callable, Agent]`    | The agent or callable object to run the task.                                         |
| `description`  | `str`                       | Description of the task.                                                              |
| `result`       | `Any`                       | Result of the task.                                                                   |
| `history`      | `List[Any]`                 | History of the task.                                                                  |
| `schedule_time`| `datetime`                  | Time to schedule the task.                                                            |
| `scheduler`    | `sched.scheduler`           | Scheduler to schedule the task.                                                       |
| `trigger`      | `Callable`                  | Trigger to run the task.                                                              |
| `action`       | `Callable`                  | Action to run the task.                                                               |
| `condition`    | `Callable`                  | Condition to run the task.                                                            |
| `priority`     | `int`                       | Priority of the task.                                                                 |
| `dependencies` | `List[Task]`                | List of tasks that need to be completed before this task can be executed.             |
| `args`         | `List[Any]`                 | Arguments to pass to the agent or callable object.                                    |
| `kwargs`       | `Dict[str, Any]`            | Keyword arguments to pass to the agent or callable object.                            |

## Methods

### `execute(self, *args, **kwargs)`

Executes the task by calling the agent or model with the specified arguments and keyword arguments. If a condition is set, the task will only execute if the condition returns `True`.

#### Parameters
- `args`: Arguments to pass to the agent or callable object.
- `kwargs`: Keyword arguments to pass to the agent or callable object.

#### Examples

```python
>>> from swarms.structs import Task, Agent
>>> from swarm_models import OpenAIChat
>>> agent = Agent(llm=OpenAIChat(openai_api_key=""), max_loops=1, dashboard=False)
>>> task = Task(description="What's the weather in Miami?", agent=agent)
>>> task.run()
>>> task.result
```

### `handle_scheduled_task(self)`

Handles the execution of a scheduled task. If the schedule time is not set or has already passed, the task is executed immediately. Otherwise, the task is scheduled to be executed at the specified schedule time.

#### Examples

```python
>>> task.schedule_time = datetime.now() + timedelta(seconds=10)
>>> task.handle_scheduled_task()
```

### `set_trigger(self, trigger: Callable)`

Sets the trigger for the task.

#### Parameters
- `trigger` (`Callable`): The trigger to set.

#### Examples

```python
>>> def my_trigger():
>>>     print("Trigger executed")
>>> task.set_trigger(my_trigger)
```

### `set_action(self, action: Callable)`

Sets the action for the task.

#### Parameters
- `action` (`Callable`): The action to set.

#### Examples

```python
>>> def my_action():
>>>     print("Action executed")
>>> task.set_action(my_action)
```

### `set_condition(self, condition: Callable)`

Sets the condition for the task.

#### Parameters
- `condition` (`Callable`): The condition to set.

#### Examples

```python
>>> def my_condition():
>>>     print("Condition checked")
>>>     return True
>>> task.set_condition(my_condition)
```

### `is_completed(self)`

Checks whether the task has been completed.

#### Returns
- `bool`: `True` if the task has been completed, `False` otherwise.

#### Examples

```python
>>> task.is_completed()
```

### `add_dependency(self, task)`

Adds a task to the list of dependencies.

#### Parameters
- `task` (`Task`): The task to add as a dependency.

#### Examples

```python
>>> dependent_task = Task(description="Dependent Task")
>>> task.add_dependency(dependent_task)
```

### `set_priority(self, priority: int)`

Sets the priority of the task.

#### Parameters
- `priority` (`int`): The priority to set.

#### Examples

```python
>>> task.set_priority(5)
```

### `check_dependency_completion(self)`

Checks whether all the dependencies have been completed.

#### Returns
- `bool`: `True` if all the dependencies have been completed, `False` otherwise.

#### Examples

```python
>>> task.check_dependency_completion()
```

### `context(self, task: "Task" = None, context: List["Task"] = None, *args, **kwargs)`

Sets the context for the task. For a sequential workflow, it sequentially adds the context of the previous task in the list.

#### Parameters
- `task` (`Task`, optional): The task whose context is to be set.
- `context` (`List[Task]`, optional): The list of tasks to set the context.

#### Examples

```python
>>> task1 = Task(description="Task 1")
>>> task2 = Task(description="Task 2")
>>> task2.context(context=[task1])
```

## Usage Examples

### Basic Usage

```python
import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, Task

# Load the environment variables
load_dotenv()

# Define a function to be used as the action
def my_action():
    print("Action executed")

# Define a function to be used as the condition
def my_condition():
    print("Condition checked")
    return True

# Create an agent
agent = Agent(
    llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
    max_loops=1,
    dashboard=False,
)

# Create a task
task = Task(
    description="Generate a report on the top 3 biggest expenses for small businesses and how businesses can save 20%",
    agent=agent,
)

# Set the action and condition
task.set_action(my_action)
task.set_condition(my_condition)

# Execute the task
print("Executing task...")
task.run()

# Check if the task is completed
if task.is_completed():
    print("Task completed")
else:
    print("Task not completed")

# Output the result of the task
print(f"Task result: {task.result}")
```

### Scheduled Task Execution

```python
from datetime import datetime, timedelta
import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, Task

# Load the environment variables
load_dotenv()

# Create an agent
agent = Agent(
    llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
    max_loops=1,
    dashboard=False,
)

# Create a task
task = Task(
    description="Scheduled task example",
    agent=agent,
    schedule_time=datetime.now() + timedelta(seconds=10)
)

# Handle scheduled task
task.handle_scheduled_task()
```

### Task with Dependencies

```python
import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, Task

# Load the environment variables
load_dotenv()

# Create agents
agent1 = Agent(
    llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
    max_loops=1,
    dashboard=False,
)
agent2 = Agent(
    llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
    max_loops=1,
    dashboard=False,
)

# Create tasks
task1 = Task(description="First task", agent=agent1)
task2 = Task(description="Second task", agent=agent2)

# Add dependency
task2.add_dependency(task1)

# Execute tasks
print("Executing first task...")
task1.run()

print("Executing second task...")
task2.run()

# Check if tasks are completed
print(f"Task 1 completed: {task1.is_completed()}")
print(f"Task 2 completed: {task2.is_completed()}")
```

### Task Context

```python
import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, Task

# Load the environment variables
load_dotenv()

# Create an agent
agent = Agent(
    llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
    max_loops

=1,
    dashboard=False,
)

# Create tasks
task1 = Task(description="First task", agent=agent)
task2 = Task(description="Second task", agent=agent)

# Set context for the second task
task2.context(context=[task1])

# Execute tasks
print("Executing first task...")
task1.run()

print("Executing second task...")
task2.run()

# Output the context of the second task
print(f"Task 2 context: {task2.history}")
```