Spaces:
Sleeping
Sleeping
File size: 9,288 Bytes
d8d14f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# Task Class Documentation
The `Task` class is a pivotal component designed for managing tasks in a sequential workflow. This class allows for the execution of tasks using various agents, which can be callable objects or specific instances of the `Agent` class. It supports the scheduling of tasks, handling their dependencies, and setting conditions and actions that govern their execution.
Key features of the `Task` class include:
- Executing tasks with specified agents and handling their results.
- Scheduling tasks to run at specified times.
- Setting triggers, actions, and conditions for tasks.
- Managing task dependencies and priorities.
- Providing a history of task executions for tracking purposes.
## Class Definition
The `Task` class is defined as follows:
### Attributes
| Attribute | Type | Description |
|----------------|-----------------------------|---------------------------------------------------------------------------------------|
| `agent` | `Union[Callable, Agent]` | The agent or callable object to run the task. |
| `description` | `str` | Description of the task. |
| `result` | `Any` | Result of the task. |
| `history` | `List[Any]` | History of the task. |
| `schedule_time`| `datetime` | Time to schedule the task. |
| `scheduler` | `sched.scheduler` | Scheduler to schedule the task. |
| `trigger` | `Callable` | Trigger to run the task. |
| `action` | `Callable` | Action to run the task. |
| `condition` | `Callable` | Condition to run the task. |
| `priority` | `int` | Priority of the task. |
| `dependencies` | `List[Task]` | List of tasks that need to be completed before this task can be executed. |
| `args` | `List[Any]` | Arguments to pass to the agent or callable object. |
| `kwargs` | `Dict[str, Any]` | Keyword arguments to pass to the agent or callable object. |
## Methods
### `execute(self, *args, **kwargs)`
Executes the task by calling the agent or model with the specified arguments and keyword arguments. If a condition is set, the task will only execute if the condition returns `True`.
#### Parameters
- `args`: Arguments to pass to the agent or callable object.
- `kwargs`: Keyword arguments to pass to the agent or callable object.
#### Examples
```python
>>> from swarms.structs import Task, Agent
>>> from swarm_models import OpenAIChat
>>> agent = Agent(llm=OpenAIChat(openai_api_key=""), max_loops=1, dashboard=False)
>>> task = Task(description="What's the weather in Miami?", agent=agent)
>>> task.run()
>>> task.result
```
### `handle_scheduled_task(self)`
Handles the execution of a scheduled task. If the schedule time is not set or has already passed, the task is executed immediately. Otherwise, the task is scheduled to be executed at the specified schedule time.
#### Examples
```python
>>> task.schedule_time = datetime.now() + timedelta(seconds=10)
>>> task.handle_scheduled_task()
```
### `set_trigger(self, trigger: Callable)`
Sets the trigger for the task.
#### Parameters
- `trigger` (`Callable`): The trigger to set.
#### Examples
```python
>>> def my_trigger():
>>> print("Trigger executed")
>>> task.set_trigger(my_trigger)
```
### `set_action(self, action: Callable)`
Sets the action for the task.
#### Parameters
- `action` (`Callable`): The action to set.
#### Examples
```python
>>> def my_action():
>>> print("Action executed")
>>> task.set_action(my_action)
```
### `set_condition(self, condition: Callable)`
Sets the condition for the task.
#### Parameters
- `condition` (`Callable`): The condition to set.
#### Examples
```python
>>> def my_condition():
>>> print("Condition checked")
>>> return True
>>> task.set_condition(my_condition)
```
### `is_completed(self)`
Checks whether the task has been completed.
#### Returns
- `bool`: `True` if the task has been completed, `False` otherwise.
#### Examples
```python
>>> task.is_completed()
```
### `add_dependency(self, task)`
Adds a task to the list of dependencies.
#### Parameters
- `task` (`Task`): The task to add as a dependency.
#### Examples
```python
>>> dependent_task = Task(description="Dependent Task")
>>> task.add_dependency(dependent_task)
```
### `set_priority(self, priority: int)`
Sets the priority of the task.
#### Parameters
- `priority` (`int`): The priority to set.
#### Examples
```python
>>> task.set_priority(5)
```
### `check_dependency_completion(self)`
Checks whether all the dependencies have been completed.
#### Returns
- `bool`: `True` if all the dependencies have been completed, `False` otherwise.
#### Examples
```python
>>> task.check_dependency_completion()
```
### `context(self, task: "Task" = None, context: List["Task"] = None, *args, **kwargs)`
Sets the context for the task. For a sequential workflow, it sequentially adds the context of the previous task in the list.
#### Parameters
- `task` (`Task`, optional): The task whose context is to be set.
- `context` (`List[Task]`, optional): The list of tasks to set the context.
#### Examples
```python
>>> task1 = Task(description="Task 1")
>>> task2 = Task(description="Task 2")
>>> task2.context(context=[task1])
```
## Usage Examples
### Basic Usage
```python
import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, Task
# Load the environment variables
load_dotenv()
# Define a function to be used as the action
def my_action():
print("Action executed")
# Define a function to be used as the condition
def my_condition():
print("Condition checked")
return True
# Create an agent
agent = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops=1,
dashboard=False,
)
# Create a task
task = Task(
description="Generate a report on the top 3 biggest expenses for small businesses and how businesses can save 20%",
agent=agent,
)
# Set the action and condition
task.set_action(my_action)
task.set_condition(my_condition)
# Execute the task
print("Executing task...")
task.run()
# Check if the task is completed
if task.is_completed():
print("Task completed")
else:
print("Task not completed")
# Output the result of the task
print(f"Task result: {task.result}")
```
### Scheduled Task Execution
```python
from datetime import datetime, timedelta
import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, Task
# Load the environment variables
load_dotenv()
# Create an agent
agent = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops=1,
dashboard=False,
)
# Create a task
task = Task(
description="Scheduled task example",
agent=agent,
schedule_time=datetime.now() + timedelta(seconds=10)
)
# Handle scheduled task
task.handle_scheduled_task()
```
### Task with Dependencies
```python
import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, Task
# Load the environment variables
load_dotenv()
# Create agents
agent1 = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops=1,
dashboard=False,
)
agent2 = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops=1,
dashboard=False,
)
# Create tasks
task1 = Task(description="First task", agent=agent1)
task2 = Task(description="Second task", agent=agent2)
# Add dependency
task2.add_dependency(task1)
# Execute tasks
print("Executing first task...")
task1.run()
print("Executing second task...")
task2.run()
# Check if tasks are completed
print(f"Task 1 completed: {task1.is_completed()}")
print(f"Task 2 completed: {task2.is_completed()}")
```
### Task Context
```python
import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, Task
# Load the environment variables
load_dotenv()
# Create an agent
agent = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops
=1,
dashboard=False,
)
# Create tasks
task1 = Task(description="First task", agent=agent)
task2 = Task(description="Second task", agent=agent)
# Set context for the second task
task2.context(context=[task1])
# Execute tasks
print("Executing first task...")
task1.run()
print("Executing second task...")
task2.run()
# Output the context of the second task
print(f"Task 2 context: {task2.history}")
```
|