Spaces:
Running
Running
harshitv804
commited on
Rename app1.py to app.py
Browse files- app1.py → app.py +15 -16
app1.py → app.py
RENAMED
@@ -1,7 +1,8 @@
|
|
1 |
from langchain_community.vectorstores import FAISS
|
2 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
-
from
|
|
|
5 |
from langchain.memory import ConversationBufferWindowMemory
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
import streamlit as st
|
@@ -50,31 +51,29 @@ if "memory" not in st.session_state:
|
|
50 |
st.session_state.memory = ConversationBufferWindowMemory(k=3, memory_key="chat_history",return_messages=True)
|
51 |
|
52 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/llm-embedder")
|
53 |
-
db = FAISS.load_local("
|
54 |
db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 3})
|
55 |
|
56 |
-
|
57 |
-
model_path="stablelm-zephyr-3b.Q4_K_M.gguf",
|
58 |
-
temperature=0.75,
|
59 |
-
max_tokens=2000,
|
60 |
-
n_ctx = 4000,
|
61 |
-
n_batch=126,
|
62 |
-
top_p=1)
|
63 |
|
|
|
64 |
|
65 |
-
|
66 |
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
Question: {question}
|
72 |
-
|
73 |
-
Answer:
|
74 |
"""
|
75 |
prompt = PromptTemplate(template=custom_prompt_template,
|
76 |
input_variables=['context', 'question', 'chat_history'])
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
qa = ConversationalRetrievalChain.from_llm(
|
79 |
llm=llm,
|
80 |
memory=st.session_state.memory,
|
|
|
1 |
from langchain_community.vectorstores import FAISS
|
2 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
+
from langchain_together import Together
|
5 |
+
import os
|
6 |
from langchain.memory import ConversationBufferWindowMemory
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
import streamlit as st
|
|
|
51 |
st.session_state.memory = ConversationBufferWindowMemory(k=3, memory_key="chat_history",return_messages=True)
|
52 |
|
53 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/llm-embedder")
|
54 |
+
db = FAISS.load_local("fdb_pg1_a", embeddings)
|
55 |
db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 3})
|
56 |
|
57 |
+
custom_prompt_template = """This is a chat tempalte and you are a medical practitioner lmm who provides correct medical information. Use the given following pieces of information to answer the user's question correctly. Utilize the provided knowledge base and search for relevant information. Follow the question format closely. The information should be abstract and concise. Understand all the context given here and generate only the answer. If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
CONTEXT: {context}
|
60 |
|
61 |
+
CHAT HISTORY: {chat_history}
|
62 |
|
63 |
+
QUESTION: {question}
|
64 |
|
65 |
+
ANSWER
|
|
|
|
|
|
|
|
|
66 |
"""
|
67 |
prompt = PromptTemplate(template=custom_prompt_template,
|
68 |
input_variables=['context', 'question', 'chat_history'])
|
69 |
|
70 |
+
llm = Together(
|
71 |
+
model="mistralai/Mistral-7B-Instruct-v0.2",
|
72 |
+
temperature=0.7,
|
73 |
+
max_tokens=1024,
|
74 |
+
together_api_key=f"{os.environ.getattribute("TOGETHER_AI")}"
|
75 |
+
)
|
76 |
+
|
77 |
qa = ConversationalRetrievalChain.from_llm(
|
78 |
llm=llm,
|
79 |
memory=st.session_state.memory,
|