Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import pickle
|
3 |
+
from sklearn.preprocessing import LabelEncoder
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
# Load the trained model from data.pkl
|
7 |
+
def load_model():
|
8 |
+
with open('data.pkl', 'rb') as file:
|
9 |
+
model = pickle.load(file)
|
10 |
+
return model
|
11 |
+
|
12 |
+
# Define the prediction function using the loaded model
|
13 |
+
def predict_user_profile(inputs):
|
14 |
+
# Preprocess the input data
|
15 |
+
lang_encoder = LabelEncoder()
|
16 |
+
lang_code = lang_encoder.fit_transform([inputs['Language']])[0]
|
17 |
+
|
18 |
+
# Create a DataFrame from the user input dictionary
|
19 |
+
df = pd.DataFrame.from_dict([inputs])
|
20 |
+
|
21 |
+
# Select the relevant feature columns used during model training
|
22 |
+
feature_columns_to_use = ['statuses_count', 'followers_count', 'friends_count',
|
23 |
+
'favourites_count', 'listed_count', 'lang_code']
|
24 |
+
df_features = df[feature_columns_to_use]
|
25 |
+
|
26 |
+
# Load the pre-trained model
|
27 |
+
model = load_model()
|
28 |
+
|
29 |
+
# Make predictions using the loaded model
|
30 |
+
prediction = model.predict(df_features)
|
31 |
+
|
32 |
+
# Return the predicted class label (0 for fake, 1 for genuine)
|
33 |
+
return "Genuine" if prediction[0] == 1 else "Fake"
|
34 |
+
|
35 |
+
# Create the Streamlit app
|
36 |
+
st.title('User Profile Classifier')
|
37 |
+
st.write('Predict whether a user profile is genuine or fake.')
|
38 |
+
|
39 |
+
# Create input fields for user data
|
40 |
+
statuses_count = st.number_input("Statuses Count", min_value=0)
|
41 |
+
followers_count = st.number_input("Followers Count", min_value=0)
|
42 |
+
friends_count = st.number_input("Friends Count", min_value=0)
|
43 |
+
favourites_count = st.number_input("Favourites Count", min_value=0)
|
44 |
+
listed_count = st.number_input("Listed Count", min_value=0)
|
45 |
+
name = st.text_input("Name")
|
46 |
+
language = st.text_input("Language")
|
47 |
+
|
48 |
+
# Create a dictionary to store user inputs
|
49 |
+
user_input = {
|
50 |
+
"statuses_count": statuses_count,
|
51 |
+
"followers_count": followers_count,
|
52 |
+
"friends_count": friends_count,
|
53 |
+
"favourites_count": favourites_count,
|
54 |
+
"listed_count": listed_count,
|
55 |
+
"name": name,
|
56 |
+
"Language": language
|
57 |
+
}
|
58 |
+
|
59 |
+
# Predict if the user clicks the button
|
60 |
+
if st.button("Predict"):
|
61 |
+
prediction = predict_user_profile(user_input)
|
62 |
+
st.write(f"Prediction: {prediction}")
|