Spaces:
Sleeping
Sleeping
File size: 1,465 Bytes
67a423d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import os
import gradio as gr
from huggingface_hub import HfFileSystem
from imgutils.generic import classify_predict_score
from natsort import natsorted
hf_fs = HfFileSystem()
_REPOSITORY = 'deepghs/anime_aesthetic'
_DEFAULT_MODEL = 'caformer_s36_v0_ls0.2'
_MODELS = natsorted([
os.path.dirname(os.path.relpath(file, _REPOSITORY))
for file in hf_fs.glob(f'{_REPOSITORY}/*/model.onnx')
])
LABELS = ["worst", "low", "normal", "good", "great", "best", "masterpiece"]
def _fn_predict(image, model):
scores = classify_predict_score(
image=image,
repo_id=_REPOSITORY,
model_name=model,
)
final_score = sum(i * scores[label] for i, label in enumerate(LABELS))
return final_score, scores
if __name__ == '__main__':
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr_input_image = gr.Image(type='pil', label='Original Image')
gr_model = gr.Dropdown(_MODELS, value=_DEFAULT_MODEL, label='Model')
gr_submit = gr.Button(value='Submit', variant='primary')
with gr.Column():
gr_score = gr.Text(label='Aesthetic Score (0~6)', value='')
gr_output = gr.Label(label='Aesthetic Classes')
gr_submit.click(
_fn_predict,
inputs=[gr_input_image, gr_model],
outputs=[gr_score, gr_output],
)
demo.queue(os.cpu_count()).launch()
|