Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from huggingface_hub import HfFileSystem | |
from imgutils.generic import classify_predict_score | |
from natsort import natsorted | |
hf_fs = HfFileSystem() | |
_REPOSITORY = 'deepghs/anime_aesthetic' | |
_DEFAULT_MODEL = 'caformer_s36_v0_ls0.2' | |
_MODELS = natsorted([ | |
os.path.dirname(os.path.relpath(file, _REPOSITORY)) | |
for file in hf_fs.glob(f'{_REPOSITORY}/*/model.onnx') | |
]) | |
LABELS = ["worst", "low", "normal", "good", "great", "best", "masterpiece"] | |
def _fn_predict(image, model): | |
scores = classify_predict_score( | |
image=image, | |
repo_id=_REPOSITORY, | |
model_name=model, | |
) | |
final_score = sum(i * scores[label] for i, label in enumerate(LABELS)) | |
return final_score, scores | |
if __name__ == '__main__': | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr_input_image = gr.Image(type='pil', label='Original Image') | |
gr_model = gr.Dropdown(_MODELS, value=_DEFAULT_MODEL, label='Model') | |
gr_submit = gr.Button(value='Submit', variant='primary') | |
with gr.Column(): | |
gr_score = gr.Text(label='Aesthetic Score (0~6)', value='') | |
gr_output = gr.Label(label='Aesthetic Classes') | |
gr_submit.click( | |
_fn_predict, | |
inputs=[gr_input_image, gr_model], | |
outputs=[gr_score, gr_output], | |
) | |
demo.queue(os.cpu_count()).launch() | |