Spaces:
Sleeping
Sleeping
import os | |
from functools import lru_cache | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from huggingface_hub import HfFileSystem, hf_hub_download | |
from imgutils.generic import classify_predict_score | |
from natsort import natsorted | |
hf_fs = HfFileSystem() | |
_REPOSITORY = 'deepghs/anime_aesthetic' | |
_DEFAULT_MODEL = 'swinv2pv3_v0_448_ls0.2_x' | |
_MODELS = natsorted([ | |
os.path.dirname(os.path.relpath(file, _REPOSITORY)) | |
for file in hf_fs.glob(f'{_REPOSITORY}/*/model.onnx') | |
]) | |
LABELS = ["worst", "low", "normal", "good", "great", "best", "masterpiece"] | |
def _get_mark_table(model): | |
df = pd.read_csv(hf_hub_download( | |
repo_id=_REPOSITORY, | |
repo_type='model', | |
filename=f'{model}/samples.csv', | |
)) | |
df = df.sort_values(['score']) | |
df['cnt'] = list(range(len(df))) | |
df['final_score'] = df['cnt'] / len(df) | |
x = np.concatenate([[0.0], df['score'], [6.0]]) | |
y = np.concatenate([[0.0], df['final_score'], [1.0]]) | |
return x, y | |
def _get_percentile(x, y, v): | |
idx = np.searchsorted(x, np.clip(v, a_min=0.0, a_max=6.0)) | |
if idx < x.shape[0] - 1: | |
x0, y0 = x[idx], y[idx] | |
x1, y1 = x[idx + 1], y[idx + 1] | |
return np.clip((v - x0) / (x1 - x0) * (y1 - y0) + y0, a_min=0.0, a_max=1.0) | |
else: | |
return y[idx] | |
def _fn_predict(image, model): | |
scores = classify_predict_score( | |
image=image, | |
repo_id=_REPOSITORY, | |
model_name=model, | |
) | |
weighted_mean = sum(i * scores[label] for i, label in enumerate(LABELS)) | |
x, y = _get_mark_table(model) | |
percentile = _get_percentile(x, y, weighted_mean) | |
return weighted_mean, percentile, scores | |
if __name__ == '__main__': | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr_input_image = gr.Image(type='pil', label='Original Image') | |
gr_model = gr.Dropdown(_MODELS, value=_DEFAULT_MODEL, label='Model') | |
gr_submit = gr.Button(value='Submit', variant='primary') | |
with gr.Column(): | |
with gr.Row(): | |
gr_score = gr.Text(label='Aesthetic Score (0~6)', value='') | |
gr_percentile = gr.Text(label='Percentile (0.0-1.0)', value='') | |
with gr.Row(): | |
gr_output = gr.Label(label='Aesthetic Classes') | |
gr_submit.click( | |
_fn_predict, | |
inputs=[gr_input_image, gr_model], | |
outputs=[gr_score, gr_percentile, gr_output], | |
) | |
demo.queue(os.cpu_count()).launch() | |