import os import gradio as gr from huggingface_hub import HfFileSystem from imgutils.generic import classify_predict_score from natsort import natsorted hf_fs = HfFileSystem() _REPOSITORY = 'deepghs/anime_aesthetic' _DEFAULT_MODEL = 'caformer_s36_v0_ls0.2' _MODELS = natsorted([ os.path.dirname(os.path.relpath(file, _REPOSITORY)) for file in hf_fs.glob(f'{_REPOSITORY}/*/model.onnx') ]) LABELS = ["worst", "low", "normal", "good", "great", "best", "masterpiece"] def _fn_predict(image, model): scores = classify_predict_score( image=image, repo_id=_REPOSITORY, model_name=model, ) final_score = sum(i * scores[label] for i, label in enumerate(LABELS)) return final_score, scores if __name__ == '__main__': with gr.Blocks() as demo: with gr.Row(): with gr.Column(): gr_input_image = gr.Image(type='pil', label='Original Image') gr_model = gr.Dropdown(_MODELS, value=_DEFAULT_MODEL, label='Model') gr_submit = gr.Button(value='Submit', variant='primary') with gr.Column(): gr_score = gr.Text(label='Aesthetic Score (0~6)', value='') gr_output = gr.Label(label='Aesthetic Classes') gr_submit.click( _fn_predict, inputs=[gr_input_image, gr_model], outputs=[gr_score, gr_output], ) demo.queue(os.cpu_count()).launch()