import gluoncv import mxnet as mx from gluoncv.utils.viz import get_color_pallete import gradio as gr # using cpu ctx = mx.cpu(0) FILE_NAME = "result.png" model = gluoncv.model_zoo.get_model("psp_resnet101_ade", pretrained=True) def segmentation(img): output = model.predict(img) predict = mx.nd.squeeze(mx.nd.argmax(output, 1)).asnumpy() mask = get_color_pallete(predict, "ade20k") # mask.save("result.png") # mmask = mpimg.imread("result.png") # plt.imshow(mmask) # plt.savefig("result.png") return mask image_in = gr.Image() image_out = gr.components.Image() Iface = gr.Interface( fn=segmentation, inputs=image_in, outputs=image_out, title="Sementic Segmentation - MXNet", ).launch()