hayas commited on
Commit
8beaaf0
1 Parent(s): 6291dfb
Files changed (3) hide show
  1. README.md +1 -1
  2. app.py +55 -81
  3. requirements.txt +2 -2
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 📊
4
  colorFrom: gray
5
  colorTo: green
6
  sdk: gradio
7
- sdk_version: 3.15.0
8
  app_file: app.py
9
  pinned: false
10
  duplicated_from: nielsr/comparing-VQA-models
 
4
  colorFrom: gray
5
  colorTo: green
6
  sdk: gradio
7
+ sdk_version: 3.35.2
8
  app_file: app.py
9
  pinned: false
10
  duplicated_from: nielsr/comparing-VQA-models
app.py CHANGED
@@ -1,98 +1,72 @@
1
  import gradio as gr
2
- from transformers import AutoProcessor, AutoModelForCausalLM, BlipForQuestionAnswering, ViltForQuestionAnswering
3
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
- torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
6
- torch.hub.download_url_to_file('https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png')
7
- torch.hub.download_url_to_file('https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg')
8
-
9
- git_processor_base = AutoProcessor.from_pretrained("microsoft/git-base-vqav2")
10
- git_model_base = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vqav2")
11
-
12
- git_processor_large = AutoProcessor.from_pretrained("microsoft/git-large-vqav2")
13
- git_model_large = AutoModelForCausalLM.from_pretrained("microsoft/git-large-vqav2")
14
-
15
- blip_processor_base = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")
16
- blip_model_base = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
17
-
18
- blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large")
19
- blip_model_large = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large")
20
-
21
- vilt_processor = AutoProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
22
- vilt_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
23
-
24
- device = "cuda" if torch.cuda.is_available() else "cpu"
25
-
26
- git_model_base.to(device)
27
- blip_model_base.to(device)
28
- git_model_large.to(device)
29
  blip_model_large.to(device)
30
  vilt_model.to(device)
31
 
32
- def generate_answer_git(processor, model, image, question):
33
- # prepare image
34
- pixel_values = processor(images=image, return_tensors="pt").pixel_values
35
-
36
- # prepare question
37
- input_ids = processor(text=question, add_special_tokens=False).input_ids
38
- input_ids = [processor.tokenizer.cls_token_id] + input_ids
39
- input_ids = torch.tensor(input_ids).unsqueeze(0)
40
-
41
- generated_ids = model.generate(pixel_values=pixel_values, input_ids=input_ids, max_length=50)
42
- generated_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)
43
-
44
- return generated_answer
45
-
46
 
 
47
  def generate_answer_blip(processor, model, image, question):
48
- # prepare image + question
49
- inputs = processor(images=image, text=question, return_tensors="pt")
50
-
51
  generated_ids = model.generate(**inputs, max_length=50)
52
- generated_answer = processor.batch_decode(generated_ids, skip_special_tokens=True)
53
-
54
- return generated_answer
55
 
56
 
 
57
  def generate_answer_vilt(processor, model, image, question):
58
- # prepare image + question
59
- encoding = processor(images=image, text=question, return_tensors="pt")
60
-
61
- with torch.no_grad():
62
- outputs = model(**encoding)
63
-
64
  predicted_class_idx = outputs.logits.argmax(-1).item()
65
-
66
  return model.config.id2label[predicted_class_idx]
67
 
68
 
69
  def generate_answers(image, question):
70
- answer_git_base = generate_answer_git(git_processor_base, git_model_base, image, question)
71
-
72
- answer_git_large = generate_answer_git(git_processor_large, git_model_large, image, question)
73
-
74
- answer_blip_base = generate_answer_blip(blip_processor_base, blip_model_base, image, question)
75
-
76
- answer_blip_large = generate_answer_blip(blip_processor_large, blip_model_large, image, question)
77
-
78
- answer_vilt = generate_answer_vilt(vilt_processor, vilt_model, image, question)
79
-
80
- return answer_git_base, answer_git_large, answer_blip_base, answer_blip_large, answer_vilt
81
-
82
-
83
- examples = [["cats.jpg", "How many cats are there?"], ["stop_sign.png", "What's behind the stop sign?"], ["astronaut.jpg", "What's the astronaut riding on?"]]
84
- outputs = [gr.outputs.Textbox(label="Answer generated by GIT-base"), gr.outputs.Textbox(label="Answer generated by GIT-large"), gr.outputs.Textbox(label="Answer generated by BLIP-base"), gr.outputs.Textbox(label="Answer generated by BLIP-large"), gr.outputs.Textbox(label="Answer generated by ViLT")]
85
-
86
- title = "Interactive demo: comparing visual question answering (VQA) models"
87
- description = "Gradio Demo to compare GIT, BLIP and ViLT, 3 state-of-the-art vision+language models. To use it, simply upload your image and click 'submit', or click one of the examples to load them. Read more at the links below."
88
- article = "<p style='text-align: center'><a href='https://huggingface.co/docs/transformers/main/model_doc/blip' target='_blank'>BLIP docs</a> | <a href='https://huggingface.co/docs/transformers/main/model_doc/git' target='_blank'>GIT docs</a></p>"
89
-
90
- interface = gr.Interface(fn=generate_answers,
91
- inputs=[gr.inputs.Image(type="pil"), gr.inputs.Textbox(label="Question")],
92
- outputs=outputs,
93
- examples=examples,
94
- title=title,
95
- description=description,
96
- article=article,
97
- enable_queue=True)
98
- interface.launch(debug=True)
 
1
  import gradio as gr
 
2
  import torch
3
+ from transformers import (AutoProcessor, BlipForQuestionAnswering,
4
+ ViltForQuestionAnswering)
5
+
6
+ torch.hub.download_url_to_file(
7
+ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
8
+ torch.hub.download_url_to_file(
9
+ 'https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png',
10
+ 'stop_sign.png')
11
+ torch.hub.download_url_to_file(
12
+ 'https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg',
13
+ 'astronaut.jpg')
14
+
15
+ blip_processor_large = AutoProcessor.from_pretrained(
16
+ 'Salesforce/blip-vqa-capfilt-large')
17
+ blip_model_large = BlipForQuestionAnswering.from_pretrained(
18
+ 'Salesforce/blip-vqa-capfilt-large')
19
+
20
+ vilt_processor = AutoProcessor.from_pretrained(
21
+ 'dandelin/vilt-b32-finetuned-vqa')
22
+ vilt_model = ViltForQuestionAnswering.from_pretrained(
23
+ 'dandelin/vilt-b32-finetuned-vqa')
24
+
25
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  blip_model_large.to(device)
28
  vilt_model.to(device)
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ @torch.inference_mode()
32
  def generate_answer_blip(processor, model, image, question):
33
+ inputs = processor(images=image, text=question,
34
+ return_tensors='pt').to(device)
 
35
  generated_ids = model.generate(**inputs, max_length=50)
36
+ generated_answer = processor.batch_decode(generated_ids,
37
+ skip_special_tokens=True)
38
+ return generated_answer[0]
39
 
40
 
41
+ @torch.inference_mode()
42
  def generate_answer_vilt(processor, model, image, question):
43
+ encoding = processor(images=image, text=question,
44
+ return_tensors='pt').to(device)
45
+ outputs = model(**encoding)
 
 
 
46
  predicted_class_idx = outputs.logits.argmax(-1).item()
 
47
  return model.config.id2label[predicted_class_idx]
48
 
49
 
50
  def generate_answers(image, question):
51
+ answer_blip_large = generate_answer_blip(blip_processor_large,
52
+ blip_model_large, image, question)
53
+ answer_vilt = generate_answer_vilt(vilt_processor, vilt_model, image,
54
+ question)
55
+ return answer_blip_large, answer_vilt
56
+
57
+
58
+ demo = gr.Interface(
59
+ fn=generate_answers,
60
+ inputs=[gr.Image(type='pil'),
61
+ gr.Textbox(label='Question')],
62
+ outputs=[
63
+ gr.Textbox(label='Answer generated by BLIP-large'),
64
+ gr.Textbox(label='Answer generated by ViLT')
65
+ ],
66
+ examples=[
67
+ ['cats.jpg', 'How many cats are there?'],
68
+ ['stop_sign.png', "What's behind the stop sign?"],
69
+ ['astronaut.jpg', "What's the astronaut riding on?"],
70
+ ],
71
+ title='Interactive demo: comparing visual question answering (VQA) models')
72
+ demo.queue().launch()
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,2 +1,2 @@
1
- git+https://github.com/huggingface/transformers.git
2
- torch
 
1
+ torch
2
+ transformers