import gradio as gr import torch from transformers import (AutoProcessor, BlipForQuestionAnswering, ViltForQuestionAnswering) torch.hub.download_url_to_file( 'http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') torch.hub.download_url_to_file( 'https://huggingface.co/datasets/nielsr/textcaps-sample/resolve/main/stop_sign.png', 'stop_sign.png') torch.hub.download_url_to_file( 'https://cdn.openai.com/dall-e-2/demos/text2im/astronaut/horse/photo/0.jpg', 'astronaut.jpg') blip_processor_large = AutoProcessor.from_pretrained( 'Salesforce/blip-vqa-capfilt-large') blip_model_large = BlipForQuestionAnswering.from_pretrained( 'Salesforce/blip-vqa-capfilt-large') vilt_processor = AutoProcessor.from_pretrained( 'dandelin/vilt-b32-finetuned-vqa') vilt_model = ViltForQuestionAnswering.from_pretrained( 'dandelin/vilt-b32-finetuned-vqa') device = 'cuda' if torch.cuda.is_available() else 'cpu' blip_model_large.to(device) vilt_model.to(device) @torch.inference_mode() def generate_answer_blip(processor, model, image, question): inputs = processor(images=image, text=question, return_tensors='pt').to(device) generated_ids = model.generate(**inputs, max_length=50) generated_answer = processor.batch_decode(generated_ids, skip_special_tokens=True) return generated_answer[0] @torch.inference_mode() def generate_answer_vilt(processor, model, image, question): encoding = processor(images=image, text=question, return_tensors='pt').to(device) outputs = model(**encoding) predicted_class_idx = outputs.logits.argmax(-1).item() return model.config.id2label[predicted_class_idx] def generate_answers(image, question): answer_blip_large = generate_answer_blip(blip_processor_large, blip_model_large, image, question) answer_vilt = generate_answer_vilt(vilt_processor, vilt_model, image, question) return answer_blip_large, answer_vilt demo = gr.Interface( fn=generate_answers, inputs=[gr.Image(type='pil'), gr.Textbox(label='Question')], outputs=[ gr.Textbox(label='Answer generated by BLIP-large'), gr.Textbox(label='Answer generated by ViLT') ], examples=[ ['cats.jpg', 'How many cats are there?'], ['stop_sign.png', "What's behind the stop sign?"], ['astronaut.jpg', "What's the astronaut riding on?"], ], title='Interactive demo: comparing visual question answering (VQA) models') demo.queue().launch()