File size: 4,086 Bytes
ec4e41c
 
 
9cff7a5
ec4e41c
 
 
 
 
 
 
7850ec9
ec4e41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cff7a5
ec4e41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08941fb
ec4e41c
08941fb
 
ec4e41c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cff7a5
 
 
ec4e41c
08941fb
 
 
ec4e41c
 
 
08941fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python

import os
from collections.abc import Iterator
from threading import Thread

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

DESCRIPTION = "# Youri-7B-chat"

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

if torch.cuda.is_available():
    model_id = "rinna/youri-7b-chat"
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
    tokenizer = AutoTokenizer.from_pretrained(model_id)


def apply_chat_template(conversation: list[dict[str, str]]) -> str:
    prompt = "\n".join([f"{c['role']}: {c['content']}" for c in conversation])
    return f"{prompt}\nシステム: "


@spaces.GPU
@torch.inference_mode()
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str = "",
    max_new_tokens: int = 1024,
    temperature: float = 0.7,
    top_p: float = 0.95,
    top_k: int = 50,
    repetition_penalty: float = 1.0,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "設定", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "ユーザー", "content": user}, {"role": "システム", "content": assistant}])
    conversation.append({"role": "ユーザー", "content": message})

    prompt = apply_chat_template(conversation)
    input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


demo = gr.ChatInterface(
    fn=generate,
    type="tuples",
    additional_inputs_accordion=gr.Accordion(label="詳細設定", open=False),
    additional_inputs=[
        gr.Textbox(
            label="System prompt",
            lines=6,
        ),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.7,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.95,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.0,
        ),
    ],
    stop_btn=None,
    examples=[
        ["東京の観光名所を教えて。"],
        ["落武者って何?"],  # noqa: RUF001
        ["暴れん坊将軍って誰のこと?"],  # noqa: RUF001
        ["人がヘリを食べるのにかかる時間は?"],  # noqa: RUF001
    ],
    description=DESCRIPTION,
    css_paths="style.css",
    fill_height=True,
)

if __name__ == "__main__":
    demo.launch()