#!/usr/bin/env python import os from collections.abc import Iterator from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer DESCRIPTION = "# Youri-7B-chat" if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) if torch.cuda.is_available(): model_id = "rinna/youri-7b-chat" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) def apply_chat_template(conversation: list[dict[str, str]]) -> str: prompt = "\n".join([f"{c['role']}: {c['content']}" for c in conversation]) return f"{prompt}\nシステム: " @spaces.GPU @torch.inference_mode() def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str = "", max_new_tokens: int = 1024, temperature: float = 0.7, top_p: float = 0.95, top_k: int = 50, repetition_penalty: float = 1.0, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "設定", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "ユーザー", "content": user}, {"role": "システム", "content": assistant}]) conversation.append({"role": "ユーザー", "content": message}) prompt = apply_chat_template(conversation) input_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) demo = gr.ChatInterface( fn=generate, type="tuples", additional_inputs_accordion=gr.Accordion(label="詳細設定", open=False), additional_inputs=[ gr.Textbox( label="System prompt", lines=6, ), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.95, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0, ), ], stop_btn=None, examples=[ ["東京の観光名所を教えて。"], ["落武者って何?"], # noqa: RUF001 ["暴れん坊将軍って誰のこと?"], # noqa: RUF001 ["人がヘリを食べるのにかかる時間は?"], # noqa: RUF001 ], description=DESCRIPTION, css_paths="style.css", fill_height=True, ) if __name__ == "__main__": demo.launch()