Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,97 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
def ask_agent(question):
|
5 |
-
|
|
|
6 |
|
7 |
# Create the Gradio interface
|
8 |
iface = gr.Interface(
|
@@ -13,4 +102,43 @@ iface = gr.Interface(
|
|
13 |
)
|
14 |
|
15 |
# Launch the Gradio app
|
16 |
-
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
from pathlib import Path
|
4 |
import gradio as gr
|
5 |
+
import nest_asyncio
|
6 |
+
import dill as pickle
|
7 |
|
8 |
+
# Ensure async compatibility in Jupyter
|
9 |
+
nest_asyncio.apply()
|
10 |
+
|
11 |
+
# Import OpenAI key with helper function
|
12 |
+
from helper import get_openai_api_key
|
13 |
+
OPENAI_API_KEY = get_openai_api_key()
|
14 |
+
|
15 |
+
# Define the path to the directory containing the PDF files
|
16 |
+
folder_path = 'Ehlers-Danlos-1'
|
17 |
+
|
18 |
+
# Get the list of all PDF files in the directory
|
19 |
+
pdf_files = glob.glob(os.path.join(folder_path, '*.pdf'))
|
20 |
+
print(pdf_files)
|
21 |
+
|
22 |
+
# Extract just the filenames (optional)
|
23 |
+
pdf_filenames = [os.path.basename(pdf) for pdf in pdf_files]
|
24 |
+
print(pdf_filenames)
|
25 |
+
|
26 |
+
# Import utilities
|
27 |
+
from utils import get_doc_tools
|
28 |
+
|
29 |
+
# Truncate function names if necessary
|
30 |
+
def truncate_function_name(name, max_length=64):
|
31 |
+
return name if len(name) <= max_length else name[:max_length]
|
32 |
+
|
33 |
+
# Path to save/load serialized tools
|
34 |
+
tools_cache_path = 'tools_cache.pkl'
|
35 |
+
|
36 |
+
# Initialize paper_to_tools_dict
|
37 |
+
paper_to_tools_dict = {}
|
38 |
+
|
39 |
+
# Check if the cache file exists and is not empty
|
40 |
+
if os.path.exists(tools_cache_path) and os.path.getsize(tools_cache_path) > 0:
|
41 |
+
try:
|
42 |
+
with open(tools_cache_path, 'rb') as f:
|
43 |
+
paper_to_tools_dict = pickle.load(f)
|
44 |
+
except EOFError:
|
45 |
+
print("Cache file is corrupted. Recreating tools.")
|
46 |
+
paper_to_tools_dict = {}
|
47 |
+
else:
|
48 |
+
print("Cache file does not exist or is empty. Recreating tools.")
|
49 |
+
|
50 |
+
# Create tools for each PDF if not loaded from cache
|
51 |
+
if not paper_to_tools_dict:
|
52 |
+
for pdf in pdf_files:
|
53 |
+
print(f"Getting tools for paper: {pdf}")
|
54 |
+
vector_tool, summary_tool = get_doc_tools(pdf, Path(pdf).stem)
|
55 |
+
paper_to_tools_dict[pdf] = [vector_tool, summary_tool]
|
56 |
+
|
57 |
+
# Save tools to cache
|
58 |
+
with open(tools_cache_path, 'wb') as f:
|
59 |
+
pickle.dump(paper_to_tools_dict, f)
|
60 |
+
|
61 |
+
|
62 |
+
# Combine all tools into a single list
|
63 |
+
all_tools = [t for pdf in pdf_files for t in paper_to_tools_dict[pdf]]
|
64 |
+
|
65 |
+
# Define an object index and retriever over these tools
|
66 |
+
from llama_index.core import VectorStoreIndex
|
67 |
+
from llama_index.core.objects import ObjectIndex
|
68 |
+
|
69 |
+
obj_index = ObjectIndex.from_objects(
|
70 |
+
all_tools,
|
71 |
+
index_cls=VectorStoreIndex,
|
72 |
+
)
|
73 |
+
|
74 |
+
obj_retriever = obj_index.as_retriever(similarity_top_k=3)
|
75 |
+
|
76 |
+
# Initialize the OpenAI LLM
|
77 |
+
from llama_index.llms.openai import OpenAI
|
78 |
+
llm = OpenAI(model="gpt-3.5-turbo")
|
79 |
+
|
80 |
+
# Set up the agent
|
81 |
+
from llama_index.core.agent import FunctionCallingAgentWorker
|
82 |
+
from llama_index.core.agent import AgentRunner
|
83 |
+
|
84 |
+
agent_worker = FunctionCallingAgentWorker.from_tools(
|
85 |
+
tool_retriever=obj_retriever,
|
86 |
+
llm=llm,
|
87 |
+
verbose=True
|
88 |
+
)
|
89 |
+
agent = AgentRunner(agent_worker)
|
90 |
+
|
91 |
+
# Define the function to query the agent
|
92 |
def ask_agent(question):
|
93 |
+
response = agent.query(question)
|
94 |
+
return str(response)
|
95 |
|
96 |
# Create the Gradio interface
|
97 |
iface = gr.Interface(
|
|
|
102 |
)
|
103 |
|
104 |
# Launch the Gradio app
|
105 |
+
iface.launch(share=True)
|
106 |
+
|
107 |
+
"""
|
108 |
+
import streamlit as st
|
109 |
+
from transformers import pipeline
|
110 |
+
|
111 |
+
# Load your model
|
112 |
+
generator = pipeline('text-generation', model='gpt-3.5-turbo')
|
113 |
+
|
114 |
+
# Streamlit interface
|
115 |
+
st.title("Text Generator")
|
116 |
+
prompt = st.text_input("Enter your prompt:")
|
117 |
+
if st.button("Generate"):
|
118 |
+
result = generator(prompt, max_length=50)
|
119 |
+
st.write(result[0]['generated_text'])
|
120 |
+
|
121 |
+
"""
|
122 |
+
|
123 |
+
"""
|
124 |
+
import gradio as gr
|
125 |
+
from transformers import pipeline
|
126 |
+
|
127 |
+
# Load your model
|
128 |
+
generator = pipeline('text-generation', model='gpt-3.5-turbo')
|
129 |
+
|
130 |
+
# Define the function to generate text
|
131 |
+
def generate_text(prompt):
|
132 |
+
result = generator(prompt, max_length=50)
|
133 |
+
return result[0]['generated_text']
|
134 |
+
|
135 |
+
# Create the Gradio interface
|
136 |
+
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Text Generator")
|
137 |
+
|
138 |
+
# Launch the interface
|
139 |
+
iface.launch()
|
140 |
+
"""
|
141 |
+
"""
|
142 |
+
import torch
|
143 |
+
print(torch.__version__)
|
144 |
+
"""
|