Spaces:
Sleeping
Sleeping
File size: 2,288 Bytes
1040e55 3a496ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import os
import csv
import json
import torch
import argparse
import pandas as pd
import torch.nn as nn
from tqdm import tqdm
from collections import defaultdict
from transformers.models.llama.tokenization_llama import LlamaTokenizer
from torch.utils.data import DataLoader
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration
from mplug_owl_video.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor
from peft import LoraConfig, get_peft_model
from data_utils.xgpt3_dataset import MultiModalDataset
from utils import batchify
softmax = nn.Softmax(dim=2)
def get_entail(logits, input_ids, tokenizer):
logits = softmax(logits)
token_id_yes = tokenizer.encode('Yes', add_special_tokens = False)[0]
token_id_no = tokenizer.encode('No', add_special_tokens = False)[0]
entailment = []
for j in range(len(logits)):
for i in range(len(input_ids[j])):
if input_ids[j][i] == tokenizer.pad_token_id: # pad token if the answer is not present
i = i - 1
break
elif i == len(input_ids[j]) - 1:
break
score = logits[j][i][token_id_yes] / (logits[j][i][token_id_yes] + logits[j][i][token_id_no])
entailment.append(score)
entailment = torch.stack(entailment)
return entailment
def get_scores(model, tokenizer, dataloader):
with torch.no_grad():
for index, inputs in tqdm(enumerate(dataloader)):
for k, v in inputs.items():
if torch.is_tensor(v):
if v.dtype == torch.float:
inputs[k] = v.bfloat16()
inputs[k] = inputs[k].to(model.device)
outputs = model(pixel_values = inputs['pixel_values'], video_pixel_values = inputs['video_pixel_values'], labels = None, \
num_images = inputs['num_images'], num_videos = inputs['num_videos'], input_ids = inputs['input_ids'], non_padding_mask = inputs['non_padding_mask'], \
non_media_mask = inputs['non_media_mask'], prompt_mask = inputs['prompt_mask'])
logits = outputs['logits']
entail_scores = get_entail(logits, inputs['input_ids'], tokenizer)
return entail_scores[0].item() |