Spaces:
Sleeping
Sleeping
import re | |
import random | |
import torch | |
import torch.utils.checkpoint | |
from transformers.processing_utils import ProcessorMixin | |
from transformers.tokenization_utils_base import BatchEncoding | |
from transformers.models.clip.image_processing_clip import CLIPImageProcessor | |
from .tokenization_mplug_owl import MplugOwlTokenizer | |
from decord import VideoReader | |
import numpy as np | |
from PIL import Image | |
def get_index(num_frames, num_segments): | |
seg_size = float(num_frames - 1) / num_segments | |
start = int(seg_size / 2) | |
offsets = np.array([ | |
start + int(np.round(seg_size * idx)) for idx in range(num_segments) | |
]) | |
return offsets | |
def load_video(path, num_frames=4): | |
vr = VideoReader(path, height=224, width=224) | |
total_frames = len(vr) | |
frame_indices = get_index(total_frames, num_frames) | |
images_group = list() | |
for frame_index in frame_indices: | |
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB') | |
images_group.append(img) | |
return images_group | |
class MplugOwlProcessor(ProcessorMixin): | |
attributes = [] | |
tokenizer_class = ("MplugOwlTokenizer") | |
def __init__(self, image_processor=None, tokenizer=None, **kwargs): | |
super().__init__(**kwargs) | |
self.tokens_to_generate = 0 | |
self.image_processor = image_processor | |
self.tokenizer = tokenizer | |
self.add_BOS = True | |
def __call__(self, videos=None, text=None, num_frames=4, return_tensors=None, **kwargs): | |
if text is not None: | |
encoding = tokenize_prompts( | |
prompts=text, | |
tokens_to_generate=self.tokens_to_generate, | |
add_BOS=self.add_BOS, | |
tokenizer=self.tokenizer, | |
ignore_dist=True, | |
**kwargs, | |
) | |
if videos is not None: | |
video_features = [] | |
for video in videos: | |
video_frames = load_video(video, num_frames) | |
video_feature = self.image_processor(video_frames, return_tensors=return_tensors, **kwargs)['pixel_values'] | |
video_features.append(video_feature) | |
video_features = torch.stack(video_features, dim=0) | |
video_features = video_features.permute(0, 2, 1, 3, 4) | |
if text is not None and videos is not None: | |
encoding["video_pixel_values"] = video_features | |
return encoding | |
if text is not None and videos is None: | |
return encoding | |
return video_features | |
def batch_decode(self, skip_special_tokens=True, *args, **kwargs): | |
""" | |
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, skip_special_tokens=skip_special_tokens, **kwargs) | |
def decode(self, skip_special_tokens=True, *args, **kwargs): | |
""" | |
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, skip_special_tokens=skip_special_tokens, **kwargs) | |
class MplugOwlImageProcessor(CLIPImageProcessor): | |
pass | |
def detokenize_generations(tokens_gpu_tensor, lengths_gpu_tensor, return_segments, tokenizer): | |
"""Detokenize the generated tokens.""" | |
prompts_plus_generations = [] | |
if return_segments: | |
prompts_plus_generations_segments = [] | |
tokens = tokens_gpu_tensor.cpu().numpy().tolist() | |
lengths = lengths_gpu_tensor.cpu().numpy().tolist() | |
for sequence_tokens, length in zip(tokens, lengths): | |
sequence_tokens = sequence_tokens[:length] | |
prompts_plus_generations.append(tokenizer.detokenize(sequence_tokens)) | |
if return_segments: | |
from tokenizers.decoders import Metaspace | |
if hasattr(tokenizer, "tokenizer"): | |
if isinstance(tokenizer.tokenizer.decoder, Metaspace): | |
words = tokenizer.tokenizer.decode(sequence_tokens) | |
else: | |
words = [] | |
for token in sequence_tokens: | |
word = tokenizer.tokenizer.decoder[token] | |
word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode( | |
"utf-8", errors="replace" | |
) | |
words.append(word) | |
prompts_plus_generations_segments.append(words) | |
else: | |
words = tokenizer.detokenize(sequence_tokens) | |
# else: | |
# words = [] | |
# for token in sequence_tokens: | |
# word = tokenizer.tokenizer.decoder[token] | |
# word = bytearray( | |
# [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode( | |
# 'utf-8', errors='replace') | |
# words.append(word) | |
prompts_plus_generations_segments.append(words) | |
if return_segments: | |
return tokens, prompts_plus_generations, prompts_plus_generations_segments | |
return tokens, prompts_plus_generations | |
def tokenize_prompts( | |
prompts=None, tokens_to_generate=None, add_BOS=None, rank=0, tokenizer=None, ignore_dist=False, **kwargs | |
): | |
"""Tokenize prompts and make them avaiable on all ranks.""" | |
# On all ranks set to None so we can pass them to functions | |
prompts_tokens_cuda_long_tensor = None | |
prompts_length_cuda_long_tensor = None | |
# On the specified rank, build the above. | |
attention_mask = None | |
if ignore_dist or torch.distributed.get_rank() == rank: | |
assert prompts is not None | |
assert tokens_to_generate is not None | |
# Tensor of tokens padded and their unpadded length. | |
prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask = _tokenize_prompts_and_batch( | |
prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs | |
) | |
# We need the sizes of these tensors for the boradcast | |
[ | |
prompts_tokens_cuda_long_tensor.size(0), # Batch size | |
prompts_tokens_cuda_long_tensor.size(1), | |
] # Sequence lenght | |
return { | |
"input_ids": prompts_tokens_cuda_long_tensor, | |
"attention_mask": attention_mask, | |
# "prompt_length": prompts_length_cuda_long_tensor, | |
} | |
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs): | |
"""Given a set of prompts and number of tokens to generate: | |
- tokenize prompts | |
- set the sequence length to be the max of length of prompts | |
plus the number of tokens we would like to generate | |
- pad all the sequences to this length so we can convert them | |
into a 2D tensor. | |
""" | |
# Tokenize all the prompts. | |
# if add_BOS: | |
# prompts_tokens = [[tokenizer.bos] + tokenizer.tokenize(prompt) | |
# for prompt in prompts] | |
# else: | |
# prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts] | |
prompts_tokens = [_tokenize_prompt(prompt, tokenizer, add_BOS, **kwargs) for prompt in prompts] | |
# Now we have a list of list of tokens which each list has a different | |
# size. We want to extend this list to: | |
# - incorporate the tokens that need to be generated | |
# - make all the sequences equal length. | |
# Get the prompts length. | |
prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens] | |
# Get the max prompts length. | |
max_prompt_len = max(prompts_length) | |
# Number of tokens in the each sample of the batch. | |
samples_length = max_prompt_len + tokens_to_generate | |
# Now update the list of list to be of the same size: samples_length. | |
for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length): | |
padding_size = samples_length - prompt_length | |
prompt_tokens.extend([tokenizer.eos_token_id] * padding_size) | |
# Now we are in a structured format, we can convert to tensors. | |
prompts_tokens_tensor = torch.LongTensor(prompts_tokens) | |
prompts_length_tensor = torch.LongTensor(prompts_length) | |
attention_mask = torch.zeros(prompts_tokens_tensor.shape[:2]) | |
for i, l in enumerate(prompts_length_tensor): | |
attention_mask[i, :l] = 1 | |
return prompts_tokens_tensor, prompts_length_tensor, attention_mask | |
def _tokenize_prompt( | |
prompt, tokenizer, add_BOS=False, | |
media_info={"<image>": 65, "<|video|>": 65}, | |
**kwargs | |
): | |
media_tokens = {k: -int(i + 1) for i, k in enumerate(media_info.keys())} | |
media_lengths = media_info.copy() | |
if add_BOS: | |
prompt_chunk = [tokenizer.bos_token_id] | |
else: | |
prompt_chunk = [] | |
# Pure Text | |
if all([media_token not in prompt for media_token in media_tokens.keys()]): | |
enc_chunk = prompt_chunk + tokenizer(prompt, add_special_tokens=False, **kwargs)["input_ids"] | |
# Multi-Modal Text | |
else: | |
enc_chunk = prompt_chunk | |
pattern = "|".join(map(re.escape, list(media_tokens.keys()))) | |
chunk_strs = re.split(f"({pattern})", prompt) | |
chunk_strs = [x for x in chunk_strs if len(x) > 0] | |
for idx, chunk_str in enumerate(chunk_strs): | |
if chunk_str in media_tokens: | |
enc_chunk += [media_tokens[chunk_str]] * media_lengths[chunk_str] | |
else: | |
tmp_chunk = tokenizer(chunk_str, add_special_tokens=False)["input_ids"] | |
# if idx < len(chunk_strs) - 1: # Last chunk should not have eos | |
# tmp_chunk += [tokenizer.eod_id] | |
enc_chunk += tmp_chunk | |
return enc_chunk | |
if __name__ == "__main__": | |
pass |